
Stackless Python --
Continuations On Stage

Christian Tismer
Mission Impossible Software Team

tismer@tismer.com

Overview

This demo will try to explain how continuations work
and how they can be used. Having read the paper on
Stackless Python is helpful but not mandatory.
Visitors are welcome to try these new non-local jump
facilities.

Instead of an implementation of coroutines and
generators as C extensions, we will see how they can
be expressed in Python, using the continuation
module. Since the theory of continuations is not very
broadly known, a small introduction is given.

Continuations

"The current continuation at any point in the
execution of a program is an abstraction of the rest of
the program”

This abstract definition will be much easier to
understand in an interactive session. Visitors are
invited to play with continuations as first class
objects and learn about the consequences of that
sentence.

Generators

Instead of a direct implementation of coroutines and
generators, I decided to use the most general
approach: Implement continuations as first class
callable objects, and express generators and
coroutines in Python. These objects can be tried
interactively.

Threads vs. Continuations

Few people might know that there is a generator
implementation using threads. It can be found in the
source distribution under demo/threads/Generator.py.
Its performance will be benchmarked against an
equivalent implementation using continuations.

Stackless Python Benchmarks

Some benchmarks comparing Stackless Python
against standard Python will be presented. Guess
which version achieves more PyStones under
Windows? !

Parallel Pattern Matching

In order to show Stackless Python’s power, we will
see 10000 tiny tasks working in parallel on a pattern-
matching problem. This cannot be done with threads
due to their massive memory overhead.

One implementation will be shown that uses explicit
scheduler calls. With some luck, we will also see
implicit task switching which is planned for Stackless
Python 1.1.

Animated Coroutine Transfer

Together with a simple coroutine example, the
current tree of stack frames will be visualized by
animated graphics.

Stackless Extension Modules

All existing extension modules will also work with
Stackless Python. Writing an extension module that
allows the new features to be used needs a couple of
design considerations. A framework for Stackless
Extensions will be presented, together with a working
implementation of a module that defines its own
interpreter function. Extensions following this pattern
have the same flexibility as Python functions.

User-defined functions need no longer be callbacks,
but can now be expressed by coroutines, which are
often faster at runtime and easier to design.

The Mission Impossible Software Team (MI5) will be
founded during the conference.

mailto:tismer@tismer.com

