
PythonUnit: a Unit Testing Framework for Python
Joel Shprentz

TRW

Abstract
I will demonstrate PythonUnit, a testing

framework that provides common testing
services and test management. It is based on
Kent Beck's unit testing framework for
Smalltalk.

Unit tests are tests of individual Python
classes. Programmers write tests for every-
thing that could conceivably not work. For
each Python class, one usually tests public
methods, important private methods, edge ef-
fects, and code that has failed before.

Each unit test case establishes a testing en-
vironment (by creating the necessary objects),
executes some code, and compares the ob-
served results with the expected results.
Deviations are reported as failures and unex-
pected exceptions are reported as errors. The
test environment is discarded after each test
case to avoid interaction between cases.

Unit tests can be grouped into test suites.
Typically, each Python module has an associ-
ated test suite. Test suites report summary
statistics for their unit tests (e.g., 3 failures and
1 error out of 34 unit tests).

Test suites can be grouped into test runs.
Each project has a test run that includes all test
suites. Programmers may create additional test
runs that include a subset of the available test
suites. A test run executes its test suites, dis-
plays test results, and saves summary
statistics. Depending on the programming en-
vironment, a test run may show its results in a
windowed GUI or as batch output to a termi-
nal.

Programming teams can use unit test sum-
mary statistics as project metrics. An increase
in the number of error-free test suites repre-
sents progress. An increase in the number of
failures or error represents trouble.

Extreme Programming particularly empha-
sizes unit testing, but unit testing is useful
with any programming methodology. In Ex-
treme Programming, unit tests are written
before new application code. Tests are run af-
ter every code change. When the tests all pass,
the code is done.

Source code and additional information is
available from the first reference web site.

Reference Books:
Kent Beck, Extreme Programming Explained:
Embrace Change, Addison-Wesley, 1999,
ISBN 0201616416.

Martin Fowler, Kent Beck, John Brant, Wil-
liam Opdyke, and Don Roberts, Refactoring:
Improving the Design of Existing Code,
Addison-Wesley, 1999, ISBN 0201485672.

Reference Web Sites:
http://c2.com/

cgi-bin/wiki?TestingFramework
http://c2.com/cgi-bin/wiki?UnitTests
http://www.xProgramming.com

Author Information
Joel Shprentz
TRW
One Federal Systems Park Drive
Fairfax, VA 22033
joel.shprentz@trw.com


