
From XML to PowerPoint via COM

Paul Prescod

ISOGEN Consulting Engineer
paul@prescod.net

Python is the ultimate glue language. Unix users are
very familiar with using Python to talk to programs
through sockets and text files. On Windows it is
possible to talk to proprietary Microsoft software
through the COM communication layer. COM is
completely object oriented and fits the "Python model"
very nicely. This demonstration shows how I keep my
slide materials in a completely open file format (XML)
and pump it into that most proprietary and recalcitrant
Microsoft program, PowerPoint. Using technologies
like PythonCOM, Python programmers can build a
bridge from the open software, open standard world to
the closed packages that most businesses still rely upon.

The XML for a slideshow looks like this:

<slide>
<title>Compared to Perl</title>
<points>
<point>Easier to learn</point>
<point>Easier to read</point>
<point>Easier to extend</point>
<point>More portable.</point>
</points>
</slide>

This is parsed into a grove. A grove is a parsed
representation for a data file (in this case XML). This
software predates the popular DOM API otherwise that
would be the obvious choice due to the excellent
support provided by packages like PyDOM and 4DOM.

A tree-walker pattern traverses the grove and triggers
different methods based on the element’s type.
Handlers are registered like this:

visitor.add( "emph", Emph)

This registers a method named “Emph” as a handler for
“emph” elements. The handler uses methods and
properties from the PowerPoint COM API:

def Emph( node, context):
    r=context.textFrame.TextRange
    r.InsertAfter( node.data() )
    r.Font.Bold=1

    r.Font.NameOther="Emph"

These calls are partially documented but their real
runtime semantics must be discovered through trial and
error. Between the COM and PythonCOM dynamic
dispatch, the system is also not very high performance.
PowerPoint is not designed as a component in an
efficient batch publishing system.

If elements could only dispatch based on element type
name then it might make sense to automatically look up
a method named “emph” for element types named
“emph”. I chose not to implement this short-cut because
an explicit handler registration system allows more
sophisticated handlers to be registered.

In this case I am looking for a “title” element type in a
“slide” element type. I dispatch to a method named
“Title”.

visitor.add(
ElementPattern( gi="title",

ancestors=["slide"] ),
Title )

Images and other objects can be embedded without any
special processing. The XML merely refers to the
image.

<img-slide filename="diagram.wmf">
<title>A Diagram</title>
</img-slide>

One general issue in this form of transformation is that
slide shows are inherently visual. Editing them in a text
file is somewhat analogous to editing a diagram in a
text file. While it is possible, it is probably not
appropriate for the average executive or sales manager.
For those that need to handle large volumes of slide
materials, though, the benefits in terms of
manageability outweigh the costs.

This sort of project could be accomplished with
PowerPoint Visual Basic macros but Python’s
flexibility is what makes maintenance reasonable
despite the baroque details of the PowerPoint API.


