omniORBpy and omniidl—CORBA for Python
Duncan Grishy

AT& T Laboratories Cambridge
24a Trumpington Sreet

Cambridge CB2 1QA, UK
dgrisby@uk.research.att.com

I ntroduction

omniORBpy is afree (LGPL and GPL) implementation
of the new CORBA to Python mapping. It is built on top
of omniORB, one of the most efficient and robust C++
ORBs available.

Why CORBA?

In our laboratory, many of the projects are based upon a
CORBA framework. CORBA allows developersto think
about application functionality without having to spend
time worrying about the details of network communi-
cation and interoperability. We started developing our
own ORB, omniORB, since other ORBs had some seri-
ous shortcomings, and were not available for al of the
platforms we use. omniORB is now available on al ma-
jor platforms, and is in widespread use outside, as well
asinside, our laboratory.

Why Python?

With a large and expanding collection of complex
CORBA -based systems, we haveincreasingly found our-
selves having to write simple programsto ‘glue’ existing
systems together, and wishing to write more extensive
prototype applications. Python is an ideal language for
both. The fact that CORBA operations can be invoked
from Python’scommand line al so providesaval uable de-
bugging tool.

In addition, we find that many of our applications
have some portions which are best implemented in C++,
and others which would be neater if they were written
in a scripting language. By providing a Python binding
for our C++ ORB, we are able to have C++ and Python
CORBA objects coexisting in a single address space,
sharing the ORB runtime.

omniORBpy design

omniORBpy has been designed to be as fast as possi-
ble, without compromising Python’sdynamic properties.
The majority of the ORB runtimeisimplementedin C++,
relying on Python only where necessary. In particular,
arguments are marshalled and unmarshalled by a set of
generic functionswhich are ableto read and write Python
data structures, through the Python C API, without exe-
cuting any Python code. These functions are driven by

type descriptors which can either be statically created by
the IDL compiler, or dynamically created at run-time.

I nter oper ability

Oneof the primary goals of the omniORB projectiscom-
plete compliance with the CORBA specification. To this
end, omniORB is one of only three ORBs to have passed
the official CORBA branding programme run by the
Open Group. omniORB completely adheres to the 11OP
(Internet Inter-ORB Protocol) specification, so it interop-
erates with any other compliant ORB. In practice, omni-
ORBpy communicates seamlessly with the majority of
other ORBs. There are a number of known bugsin some
ORBs, for which omniORB contains work-arounds.

omniidl
CORBA types and interfaces are declared in an Interface
Definition Language (1DL), which must be compiled into
declarations in the target programming language. 1DL
compilers are traditionally very poorly structured, mix-
ing compiler logic with fragments of code to be output.
This makes compiler maintenance extremely difficult.
omniidl isanew IDL compiler which is used to pro-
duce both Python and C++ stubs for omniORB. The
front-end parser is written in C++ (with help from flex
and bison); back-ends for the different target languages
are al written in Python.

Back-ends store the code to be output as a set of tem-
plate strings, containing tags marking those parts which
vary according to the input IDL. There is therefore a
clean separation between the logic which decides what
code to output, and the fragments of code themselves.
This approach, combined with the use of Python, makes
writing and maintaining back-ends far simpler than it is
with other compiler designs.

Having an easy-to-use IDL compiler has enabled
us to experiment with generating special-purpose code
based upon IDL definitions. Work so far has explored
automatic notification of attribute changes, and caching
of attribute values.

Moreinformation

Further information about omniORBpy can be found at
http://www.uk.research.att.com/omni ORB/



