
Using Python to Modernize Astronomical Software

Richard L. White and Perry Greenfield

Space Telescope Science Institute
Baltimore MD 21218

http://www.stsci.edu
rlw@stsci.edu

perry@stsci.edu

Abstract

We have developed a Python replacement for the com-
mand language used in IRAF, the most widely used
data analysis software system in astronomy. The new
system allows access to the hundreds of data analysis
tasks in the IRAF system, retains the package and pa-
rameter structures currently used in IRAF, handles the
graphics output and image display interactions, and is
capable of completely emulating the old scripting lan-
guage by translating it into Python. We expect the new
language to become widely used in astronomy because
it combines access to the familiar suite of IRAF tasks
with a more powerful programming language that is
also capable of manipulating data directly through the
NumPy module. This paper describes the problems we
faced, the solutions we have adopted, and our future
plans. The entire project has been much easier than we
anticipated, due largely to the excellent facilities pro-
vided by the Python language and user community.

1 Introduction

The most widely used data analysis software in the as-
tronomical community is a system called the Image
Reduction and Analysis Facility (IRAF) [Tody84]. It is
estimated that approximately half of astronomers use
IRAF regularly. The Space Telescope Science Institute
(STScI) has used IRAF as the basis of all the software it
has developed for calibration and analysis of Hubble
Space Telescope data. While IRAF has proved a dura-
ble environment for software development and has a
number of positive aspects that are particularly useful
for astronomical data analysis software, it is becoming
increasingly outmoded.

One approach to updating our software environment
would be to find or develop a completely new software
system. Unfortunately this would require rewriting a
great number of applications already developed under
IRAF—some million lines of code in which hundreds
of man-years are invested. Starting from scratch is con-
sidered untenable due to both the effort required to

replace the existing applications and the time required
to produce a critical mass of applications sufficient to
attract astronomers to the new system. Any effort to
transform our analysis environment must be evolution-
ary in nature and must retain the ability to run the vast
majority of applications developed to date. This paper
describes how we are using Python to do just that.

2 IRAF and Data Analysis in the
Astronomical Community

Understanding the nature of the problem and the solu-
tion we have chosen requires some explanation of the
IRAF system and the nature of data reduction and
analysis in astronomy. One of the fundamental goals of
the IRAF system was to allow astronomical applica-
tions to be developed in a portable way that would
make it easy to distribute the software to astronomers
worldwide. Typically astronomers take data at tele-
scope facilities far from their home institutions.
Understandably, most astronomers would like to reduce
and analyze their data at their home institution rather
than remaining at the observatory. Since there are many
aspects of calibration, data reduction and analysis
common to most astronomical data, it makes sense to
have widely distributed applications rather than to ex-
pect astronomers to code all their data analysis applica-
tions (which was the common approach before IRAF
was developed.)

Distributing software to a diverse set of computing plat-
forms is still a thorny problem; it was a thornier
problem at the time the IRAF system was designed
(1979–1984). The IRAF design was primarily centered
around allowing easy portability for applications while
retaining the ability to write computationally efficient
programs. IRAF solved this problem quite well. Pro-
grams written in the IRAF system port fantastically
easily. Applications virtually never require platform
specific code; there are rarely any problems building or
running such applications on supported platforms. As
long as the IRAF system has been ported to your com-
puting platform you can have great confidence that the

applications software written for IRAF will work fine
on it (well, aside from the bugs that plague software in
general—these are platform-independent bugs!)

This portability comes at a cost, however. Two major
choices were made to ensure portability. One was that
IRAF would provide a virtual operating system inter-
face to applications. All applications are required to use
only the virtual operating system interface. This inter-
face provides access to all the usual system services
such as file and terminal I/O, process control, and sig-
nal handling. The second choice was to require IRAF
programs to be written in a special language. It was
judged at the time that no existing language was suffi-
ciently portable, had the necessary system features
(such as memory allocation), and was efficient enough
for numerical computation. Consequently, the designer
of IRAF chose to implement a new language (called
SPP) that the IRAF system ultimately translates into
FORTRAN 66. This language, which combines ele-
ments of FORTRAN and C, was until recently the only
language having access to the full functionality of the
system libraries for applications. Virtually all of the
applications developed for IRAF were, until recently,
written in SPP.

While these choices did meet the goal of portability,
they entail drawbacks that are becoming more painful
as time goes on. The decision to provide a virtual OS
interface commits the maintainer of the system to the
heavy burden of maintaining many aspects of an OS
with far fewer resources than are usually available to
those that are responsible for such systems. Adding the
new capabilities that are found in other current systems
is even more difficult. The net result has been that
IRAF has lagged behind the features and capabilities
commonly expected in new OS’s and applications.
Worse, the design makes it very difficult to integrate
outside libraries and applications because of the re-
quirement that all code use the provided virtual OS
interface. It is an extremely closed system.

Finally, the use of a custom language that lacks many
of the features found in more modern languages—par-
ticularly object-oriented features—has obvious
problems. Programmers using it often feel that they are
not learning marketable skills, and they do not get the
productivity benefits seen in newer, standard languages.
Most troubling of all is the large code base that cannot
be easily moved into any other environment without a
complete rewrite.

3 Desired Changes

Many areas of the IRAF system could either be im-
proved or replaced to make it more open to use with
other software. One step in this direction at STScI was
the generation of bindings that allow writing IRAF pro-
grams in C. This at least allows us to program in a
standard language, although the dependence on the
virtual OS interface still presents many barriers to inte-
grating IRAF software with other software.

We decided that the next most important improvement
would be to develop an alternate “shell” for the IRAF
system. The IRAF system has its own “Command Lan-
guage” (CL) which is effectively its virtual OS shell.
From this CL, one can run IRAF tasks, perform file
operations, get directory listings, print files, etc. Scripts
can be written in the CL, and as such it is also a script-
ing language. But it has many limitations, not least of
which is that it has no error or exception handling. This
makes writing robust, complex scripts difficult, if not
impossible.

If we could replace the existing IRAF CL with a more
capable shell environment, we would reap some im-
portant benefits. We could write significantly more
powerful and robust scripts, so many tasks that now
must be developed as C programs could be instead
written in the scripting language. We could develop
GUI interfaces much more easily. (Writing GUI tasks
in IRAF is now possible, but they are both tedious to
develop and difficult to maintain.) Perhaps most im-
portantly, we could integrate non-IRAF tasks and
libraries with IRAF far more easily, allowing the addi-
tion of new capabilities to the system.

Writing a good scripting language is a lot of work and
is hard to justify if a good, general purpose, extensible
language already exists. Thus our interest in Python.

Given the limitations of IRAF just described, how
would it be possible to do what we have outlined? After
all, if it is difficult to link in outside programs because
of the virtual OS restrictions, why would we be able to
do it with Python? The reason is that the CL environ-
ment need not be directly linked with the IRAF virtual
OS. Almost all IRAF applications run as sub-processes
of the CL and communicate with the CL through stdin
and stdout pipes. This is not to say that handling the
tasks is simple, but the fact that the CL communicates
with tasks through pipes instead of through an OS-
based link makes the problem tractable. The problem
reduces to creating a scripting environment that emu-
lates the task communication protocol, so that the

applications believe they are running in the old CL en-
vironment.

For a new CL environment to successfully run the ex-
isting applications in a convenient way, the following
problems must be solved:

q The environment must start up the application ex-
ecutables as sub-processes and communicate with
them through pipes following a special protocol.
This protocol multiplexes several I/O streams from
the application (stdout, stderr, graphics, etc.) onto
one set of input/output pipes. The new environment
must de-multiplex the various I/O streams and must
properly manage the sub-process (including sending
appropriate environment information, initiating the
execution of one of several tasks in an executable,
responding to task requests for parameters, handling
interrupts and errors, etc.) The entire process is
rather complicated.

q Applications (tasks) in IRAF are organized in a hi-
erarchical set of packages, each of which may
contain any number of tasks or packages (similar to
a directory tree.) CL scripts are used to define the
hierarchical structure of these packages, with a
package script indicating where the executable for
each task can be found (an executable may contain
multiple task entry points) and where the next level
of package scripts can be found. A new environ-
ment must be able to traverse the package tree from
the existing CL scripts, because replicating the dy-
namic package structure information would be
error-prone and time-consuming.

q The CL environment manages the parameters con-
trolling the tasks. Each task usually has an
associated parameter file which defines the names
of parameters, their types, default values, enumer-
ated values or ranges for each parameter, and
prompt strings. Parameter values are persistent be-
tween task invocations (and, in fact, between IRAF
sessions); this turns out to be very convenient for
typical data analysis sessions. The CL itself reads
the parameter files and interacts with the user to
change current values. A new CL environment must
be able to find the parameter files, read and interpret
them properly, apply the appropriate type and range
constraints, and respond to the task’s requests for
parameter values.

q The CL also manages the graphics that any task
produces. All graphics produced by tasks result in a
metacode stream of simple graphics instructions to
the CL. The CL must determine which device the

graphics are destined for and translate the metacode
into device-specific graphics instructions.

q The CL manages the interactions between the task
and image display programs. A number of tasks re-
quest the position of an image cursor along with a
keystroke character value to determine what action
the task should take (i.e., interactive responses). The
CL must be able to communicate with standard as-
tronomical image display programs (e.g., ximtool
and saoimage) using their specialized protocol.

q A few tasks may request arbitrary CL commands to
be executed. Replicating this behavior essentially
requires emulating the old CL completely.

q Many ‘tasks’ are actually implemented as CL
scripts. Retaining access to their functionality re-
quires either rewriting them in the new scripting
language or, again, emulating the old CL.

In short, to be able to create a new CL, one must be
able to perform the above functions or sacrifice some
capabilities. Whichever tool is used to implement a new
CL must be capable of sub-process creation, communi-
cation, and management; it must be powerful enough to
parse and emulate the old CL syntax and semantics. It
must be able to interpret a graphics metacode stream
and render graphics; it must provide all the necessary
capabilities to communicate with image display pro-
grams and handle user interactions; and it must be able
to do so quickly and without great implementation ef-
fort.

As if this weren’t enough to ask, we required even
more. The new system must interface easily with ex-
isting C code, and it must have a usable interactive
environment for astronomers, many of prefer to interact
with tasks by using a simple shell-like syntax (e.g.,
space-delimited argument lists with quotes optional on
strings). Another design consideration is portability.
Although IRAF has been ported to a number of plat-
forms, all the supported platforms are Unix variants
(with the exception of VMS, which will soon be unsup-
ported). Aspects of the new CL system are necessarily
Unix-specific, since without a Windows or Mac port of
IRAF, we do not know how the specific mechanisms
will work on those operating systems. For example, one
needs to know how IRAF will implement process
communications and fork functionality, which could
use several different approaches on Windows. Even so,
we desire that the non-IRAF enhancements to the new
CL be portable to other platforms even if IRAF is not
yet implemented on them.

Finally, and perhaps most important, a key element in
making a new CL environment more powerful is pro-
viding access to powerful and efficient numerical array
operations. While IRAF is the most widely used astro-
nomical data reduction and analysis facility, a
substantial fraction of astronomers use the array-based
language IDL to write reduction and analysis tasks. IDL
(Interactive Data Language, http://www.rsinc.com/) has
proven very useful in the astronomical context, and
many astronomers swear by it. But it is expensive and
lacking as a general programming language. Currently,
the IRAF CL has essentially none of the data manipu-
lation facilities that make IDL so attractive. On the
other hand, it is difficult to write integrated, high-level
applications in IDL that are competitive with those in
IRAF, and running IRAF tasks from IDL is next to im-
possible. Neither is easy to integrate with the other.

We would like the new CL that we are developing to
integrate the powerful, interactive, array and graphics
capabilities that make prototyping new scientific analy-
sis algorithms so easy in IDL with the existing suite of
fully developed IRAF applications that can handle
many common (but difficult) data analysis problems.

4 Using Python as the New Environment
for IRAF

4.1 Requirements for underlying script-
ing language

When searching for the appropriate tool to implement a
new CL, Python looked like a likely candidate. The
existing set of libraries and code, along with the ability
to easily interface with C programs, led us to believe
that it might be possible to implement much of the CL
in Python. NumPy looked like a very promising basis
on which to provide array-based analysis features. Still,
Python is not unique in this regard. We also required
that the language: (1) had a wide enough user base to
expect that it would be around for a while, (2) provided
good support for object-oriented programming, and,
most important, (3) was readable enough for many as-
tronomers to feel that it was a programming language
that they could use. In this regard, Python stood out as a
clear choice. Nevertheless, it still was not clear that
replacing the IRAF CL with Python was feasible.

4.2 Python made it much easier than ex-
pected

As it turned out, we needn’t have worried. We have
been able to implement a new CL with far less effort
than we expected using Python. Over the span of one

year, we have implemented all the major functionality
required, including nearly complete emulation of the
old CL. Virtually all our development has been done in
the Python language itself without any serious perform-
ance problems. The basic system was developed with
approximately a total combined effort of 6 man-months.
The following will broadly indicate the tools we used to
implement the new CL.

4.3 Sub-process control & communica-
tion

We use the subproc module (available from
ftp://ftp.python.org/pub/python/contrib) as a basis for
the control of the IRAF applications running as sub-
processes. While some modifications were necessary,
we have been able to use it to reliably control the IRAF
executables. We have used NumPy in a few areas to
convert between IRAF 16-bit characters and ASCII,
and to handle IRAF 16-bit data transfers (e.g., graphics
metacode).

4.4 Graphics

PyOpenGL was used to implement a graphics kernel
that renders the IRAF graphics metacode in Tkinter
(Togl) widgets. We are currently exploring the possi-
bility of using wxPython as an alternative to Tkinter.

4.5 Task objects

IRAF tasks are represented as Python objects. A task
object embodies the specific information needed to ac-
tually execute the task. Such objects are created when
IRAF packages are loaded in the Python environment
(with lazy instantiation used for some attributes to
avoid excessive initialization costs.) Packages are also
represented as task objects and, when executed, load the
tasks and packages contained within the package by
creating new task objects.

The task object’s __call__ method has been defined
to allow execution of the task when the task object is
called as a function. Both positional and keyword ar-
guments are supported; in keeping with the IRAF CL
style, parameters defined as “hidden” are accessible
only as keyword arguments. Unambiguous abbrevia-
tions are also allowed for keyword names.

Currently we have a few different alternatives for the
namespaces in which the task objects appear. In one
case they appear in the main namespace, in another they
appear in the iraf module namespace. We expect to
settle on a standard approach to namespaces after some
experience using the system.

4.6 Task parameters

IRAF tasks usually have parameter files that specify the
names of parameters for the tasks along with their
types, allowable values, default or current values, and
prompt strings. We decided to map these parameter
names to task attributes, with a few twists. Assigning to
a parameter attribute changes the parameter value, but it
is important to prevent a typo in the parameter name
from creating a new attribute rather than changing the
value of the intended parameter. We use
__setattr__ to prevent such errors. We also allow
name completion on parameter attributes (so a parame-
ter name can be abbreviated to an unambiguous shorter
string) using suitable modifications of __setattr__
and __getattr__. Finally, when a parameter attrib-
ute is assigned a value, the type and value are checked
to insure they conform to the parameter definition.

A GUI parameter editor (using file browsers, choice
lists for parameters with enumerated values, integrated
help, etc.) has been written using Tkinter.

When a task is executed, defaults for all omitted pa-
rameters come from the persistent values read from the
parameter file or set by the user before running the task.
Python has the flexibility to allow parameter-setting
mechanisms that are very similar to those provided by
the IRAF CL, making use of the new task and parame-
ter interface easy for current IRAF users.

4.7 Emulation of the IRAF CL

The old CL was emulated by using Aycock’s “little
languages” framework [Aycock98] to translate CL code
to Python. The Python code can be either saved as
source code or compiled and executed in Python. In-
deed, we now have a system that will accept CL
commands in exactly the same syntax as the original as
well in Python syntax. While this particular parsing
module may not be the fastest available (though it is
quite elegant and powerful, and we have made a few
improvements to make it faster), its speed is not viewed
as a serious problem. The one-time cost of translating
previously untranslated IRAF CL scripts to Python is
acceptable because the resulting Python code can easily
be saved for future use via a combination of pickle and
shelve.

4.8 Front-end interpreter

We have developed a front end for the Python inter-
preter to permit use of a simple alternate syntax as well
as provide many of the conveniences expected by IRAF
users (described below). The alternate syntax is blended

with normal Python by keying off a task dictionary. If
the user types a line beginning with an identifier fol-
lowed by a space and more identifiers or expressions
(the first cannot start with parentheses, to make distin-
guishing Python function calls easier), then the initial
identifier is looked up in the task dictionary (using the
minimum matching capability mentioned later). If it is
found, then the line is interpreted as being in the old CL
syntax. Otherwise, it is treated as Python syntax (sub-
ject to the modifications mentioned below).

In this way, if the user types something like

imcopy infile oufile

then the task imcopy is found in the dictionary of cur-
rently loaded tasks and the command is translated into

iraf.imcopy(“infile”,”outfile”)

and fed to the Python interpreter. Of course, this
mechanism prevents use of a whole class of legal Py-
thon statements, but we judged that there were simple
ways of duplicating the “shadowed” Python syntax. For
example, if one defines a variable

imcopy = “just a simple string”

then one cannot type interactively

imcopy

and expect to see the string printed. But the workaround
is simple: print imcopy .

The tasks that can be invoked using the command-style
syntax are not limited to IRAF applications. We have
generalized the task interface to cover Python functions
as well. One can register a Python function as a task to
be included in the task dictionary, and then it can be
invoked in much the same way with a similar parameter
interface. Such registration requires indicating the pa-
rameter types expected by the Python function. Then
each argument is checked to see if it conforms to the
task parameter type specifications and an exception is
raised if it cannot be coerced properly. This alleviates
the need for type and value checking in the Python
functions.

Other interactive conveniences provided by the front-
end interpreter include:

• A convenient mechanism for shell escapes:
!ls *.*

• Command logging. While an alternate syntax is al-
lowed—the “command” style—the statements logged
to the file are the translated representation, so the file
can be used as a Python script.

• Basic file and directory utilities, i.e., directory list-
ings, file renaming, copying, deletion, and printing;
creating and removing directories; searching for
strings in files, etc. These suffice for the most com-
mon file manipulations.

• I/O redirection and piping a la the Unix shell.

• Task name abbreviations. Any unambiguous abbre-
viation can be used in place of the full names.

• Use of ‘{‘ and ‘}’ as an alternate statement blocking
mechanism (GASP!). This is available in interactive
mode only (what is logged is the equivalent indented
source). Its provides a convenient way of typing a
multiple-statement block on a single line, making for
easy command line recall.

4.9 Non-Python code

The only C code required fell into two categories. A
small number of specialized Xlib utilities were needed
to handle window functions not supplied with Tk (such
as focus setting to the original terminal window and
cursor warping). A wrapper was created for an existing
C library that provides functions to communicate with
image display programs used in astronomy [Fitz-
patrick97].

4.10 Summary

The net result of our efforts is a new environment that
allows one to run nearly all IRAF tasks from Python,
including setting up an environment for IRAF tasks and
locating packages, executables and parameter files from
the existing IRAF installation.

The new CL, which we have tentatively dubbed Pyraf,
is now available to all users at STScI and is being beta
tested at a few outside sites. We plan to release it to the
general community in summer of 2000. Like all our
previous software, it will be freely available including
the source code. While most of the code is only of in-
terest to IRAF users, some of it (the parameter
interface, improvements to subproc and Aycock’s
framework, and the front-end interpreter) may be useful
for other Python projects.

5 Future Work

While we have made great progress, this is only the
first in a series of steps to provide astronomers with
greater data analysis and reduction capabilities. The
existing functionality basically only replicates the ex-
isting IRAF functionality and, by itself, will not spur
many users to switch unless they have a critical need
for the enhanced programming environment that Python
provides. A number of future developments are also
essential for widespread acceptance of the new Python
CL environment by the astronomical community.

Develop new Pyraf applications at STScI that pro-
vide functionality not available in the current IRAF
CL. We have already started two such projects.

Demonstrate the ability to write useful GUI applica-
tions far more easily than is possible to do in IRAF
alone. We have already started such a project.

Provide enhancements to the interactive environ-
ment that make using IRAF tasks easier than the
current IRAF CL. We have already included a few
minor improvements: for example, it is now possible to
have multiple plotting windows and to recall old plots,
and the GUI parameter editor is easier to use than the
existing IRAF editor.

Add IDL-like data manipulation functionality to the
Pyraf environment. To a certain extent, this already
exists in NumPy, but both generic and IRAF-specific
enhancements are needed. Major items include:

q The means to read and write data in common astro-
nomical disk formats to NumPy arrays. This is
under development as part of the PyFITS module
[Barrett98]. Even more useful would be a mecha-
nism to pass NumPy arrays directly to IRAF tasks,
which would probably require changes to the IRAF
system.

q Plotting and image display facilities at the level
provided by IDL and other similar software. At this
writing (November 1999), Python is not quite there.
There are a number of scientific plotting packages
available in Python but none satisfies the require-
ment that it be freely available, portable, and
sufficiently powerful. (As an aside, astronomical
data analysis generally has had little demand for ad-
vanced 3-D visualization tools; the great majority of
astronomers are quite happy with 2-D graphics.)
Recent progress with Piddle and Graphite [Strout99]
gives us some optimism that these will form the ba-
sis for a good astronomical plotting suite.

q Enhance NumPy’s basic functionality to make it
equivalent to (or better than!) IDL, Matlab, and
other array languages. Astronomers deal with large
arrays (newer instruments are generating 8K x 8K
pixel images). Efficient use of memory and efficient
standard functions are musts when handling such
large images. Currently it is difficult to write
NumPy programs that retain data in 16-bit or single
precision floating point format without automatic
up-casting to larger data types. Lack of
gather/scatter capability and efficient intrinsic func-
tions is another problem (there is no efficient
histogram function for example). We know that oth-
ers are working to remedy these problems, and we
are also planning to contribute effort to improving
NumPy.

Make the software easy to distribute and install. The
problem is not so much with the programs we write; the
Python code we develop will be trivial to install, and
there is not much C code so it also should not present a
serious problem. The difficulty is in having users install
all the extensions that are necessary to run our software.
Users must install Python itself (with the necessary
modules enabled such as fcntl). They also need to in-
stall PyOpenGL and related extensions, which is more
troublesome. We’re aware that much work is going on
in the distutils SIG to unify the installation process for
extension modules, and we eagerly look forward to the
fruits of that work. But at this time, we consider it
needlessly painful to install the required software.

References

[Aycock98] Aycock, John (1998) “Compiling Little
Languages in Python”, Proceedings of the Seventh
International Python Conference, p. 100
(http://www.foretec.com/python/workshops/1998-
11/proceedings/papers/aycock-little/aycock-
little.html)

[Barrett98] Barrett, P. & Bridgman, W. (1998) “Py-
FITS, a FITS Module for Python”, Astronomical
Data Analysis Software and Systems VIII, Astro-
nomical Society of the Pacific Conference Series,
171, 483
(http://monet.astro.uiuc.edu/adass98/Proceedings/-
barrettpa/)

[Fitzpatrick97] Fitzpatrick, Michael (1997) “The IRAF
Client Display Library”, Astronomical Data Analy-
sis Software and Systems VII, Astronomical
Society of the Pacific Conference Series, 145, 200
(http://www.stsci.edu/stsci/meetings/adassVII/-
fitzpatrickm.html)

[Strout99] Strout, J. (1999) (see
http://www.strout.net/python/ for details of status
of Piddle and Graphite development, the former of
which involves several people)

[Tody84] Tody, D. (1984) “The IRAF Data Reduction
and Analysis System”, Proc. SPIE Instrumentation
in Astronomy VI, ed. D. L. Crawford, 627, 733
(see also http://iraf.noao.edu/)

