I ntegrating Diver se Data Sour ces with Gadfly 2

Aaron Watters
http://www.chordate.com/

arw@ifu.net

ABSTRACT

This paper describes the primative methods underlying the implementation of SQL query evaluation in
Gadfly 2, a database management system implemented in Python [Van Rossum]. The major design goals
behind the architecture described here are to simplify the implementation and to permit flexible and efficient
extensions to the gadfly engine. Using this architecture and its interfaces programmers can add functionality
to the engine such as aternative disk based indexed table implementations, dynamic interfaces to remote data
bases or or other data sources, and user defined computations.

Backgrounder

The term "database” usually refersto a persistent collection of data. Datais persistent if it continues to exist
whether or not it is associated with a running process on the computer, or even if the computer is shut down
and restarted at some future time. Database management systems provide support for constructing databases,
maintaining databases, and extracting information from databases.

Relational databases manipulate and store persistent table structures called relations, such as the following
three tables

-- drinkers who frequent bars (this is a coment)
select * fromfrequents

DRI NKER | PERWEEK | BAR

adam | 1 | lolas
woody | 5 | cheers
sam | 5 | cheers
norm | 3 | cheers
wilt | 2 | joes
norm | 1 | joes
lola | 6 | lolas
norm | 2 | lolas
woody | 1 | lolas
pierre | O | frankies

-- drinkers who |ike beers
select * fromlikes

DRI NKER | PERDAY | BEER

adam | 2 | bud

wilt | 1 | rollingrock
sam | 2 | bud

norm | 3 | rollingrock
norm | 2 | bud

nan | 1 | sierranevada
woody | 2 | pabst

lola | 5 | mickies

First Page/ Aaron Watters/ arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

-- beers served frombars
select * from serves

BAR | QUANTITY | BEER
cheers | 500 | bud

cheers | 255 | sanmdans

j oes | 217 | bud

j oes | 13 | samadans

j oes | 2222 | mckies

| ol as | 1515 | mickies

| ol as | 333 | pabst

wi nkos | 432 | rollingrock
frankies | 5 | snafu

Therelational model for database structures makes the simplifying assumption that all datain a database can
be represented in simple table structures such as these. Although this assumption seems extreme it provides
agood foundation for defining solid and well defined database management systems and some of the most
successful software companies in the world, such as Oracle, Sybase, IBM, and Microsoft, have marketed
database management systems based on the relational model quite successfully.

SQL stands for Structured Query Language. The SQL language defines industry standard mechanisms for
creating, querying, and modified relational tables. Several years ago SQL was one of many Relational
Database Management System (RDBMS) query languages in use, and many would argue not the best on.
Now, largely due to standardization efforts and the backing of IBM, SQL is THE standard way to talk to
database systems.

There are many advantages SQL offers over other database query languages and aternative paradigms at this
time (please see [O'Neill] or [Korth and Silberschatz] for more extensive discussions and comparisons
between the SQL/relational approach and others.)

The chief advantage over al contenders at thistime isthat SQL and the relational model are now widely used
asinterfaces and back end data stores to many different products with different performance characteristics,
user interfaces, and other qualities: Oracle, Sybase, Ingres, SQL Server, Access, Outlook, Excel, IBM DB2,
Paradox, MySQL, MSQL, POSTgres, and many others. For this reason a program designed to use an SQL
database as its data storage mechanism can easily be ported from one SQL data manager to another, possibly
on different platforms. In fact the same program can seamlessly use several backends and/or import/export
data between different data base platforms with trivial ease. No other paradigm offers such flexibility at the
moment.

Another advantage which is not asimmediately obvious is that the relational model and the SQL query
language are easily understood by semi-technical and non-technical professionals, such as business people
and accountants. Human resources managers who would be terrified by an object model diagram or a
snippet of code that resembles a conventional programming language will frequently feel quite at ease with a
relational model which resembles the sort of tabular data they deal with on paper in reports and formson a
daily basis. With alittle training the same HR managers may be able to trandlate the request "Who are the
drinkers who like bud and frequent cheers?" into the SQL query

sel ect drinker
from frequents
wher e bar='cheers
and drinker in (
sel ect drinker
fromlikes
wher e beer="bud")

(or at least they have some hope of understanding the query once it iswritten by atechnical person or
generated by a GUI interface tool). Thusthe use of SQL and the relational model enables communication
between different communities which must understand and interact with stored information. In contrast many
other approaches cannot be understood easily by people without extensive programming experience.

Furthermore the declarative nature of SQL lends itself to automatic query optimization, and engines such as
Gadfly can automatically translate a user query into an optimized query plan which takes advantage of
available indices and other data characteristics. In contrast more navigational techniques require the
application program itself to optimize the accesses to the database and explicitly make use of indices.

Page 2 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

While it must be admitted that there are application domains such as computer aided engineering design
where the relational model is unnatural, it is aso important to recognize that for many application domains
(such as scheduling, accounting, inventory, finance, personal information management, electronic mail) the
relational model isavery natural fit and the SQL query language make most accesses to the underlying data
(even sophisticated ones) straightforward.

For an example of a moderately sophisticated query using the tables given above, the following query lists
the drinkers who freguent lolas bar and like at least two beers not served by lolas

sel ect f.drinker
fromfrequents f, likes I
where f.drinker=l.drinker and f.bar="1ol as’
and | .beer not in
(sel ect beer from serves where bar='lolas')
group by f.drinker
havi ng count (di stinct beer)>=2

yielding the result
DRI NKER

Experience shows that queries of this sort are actually quite common in many applications, and are often
much more difficult to formulate using some navigational database organizations, such as some "object
oriented" database paradigms.

Certainly, SQL does not provide all you need to interact with databases -- in order to do "real work" with
SQL you need to use SQL and at least one other language (such as C, Pascal, C++, Perl, Python, TCL, Visua
Basic or others) to do work (such as readable formatting a report from raw data) that SQL was not designed
to do.

Why Gadfly 1?

Gadfly 1.0 isan SQL based relational database implementation implemented entirely in the Python
programming language, with optional fast data structure accellerators implemented in the C programming
language. Gadfly isrelatively small, highly portable, very easy to use (especially for programmers with
previous experience with SQL databases such as MS Access or Oracle), and reasonably fast (especially when
the kjbuckets C accellerators are used). For moderate sized problems Gadfly offers afairly complete set of
features such as transaction semantics, failure recovery, and a TCP/IP based client/server mode (Please see
[Gadfly] for detailed discussion).

Why Gadfly 27?

Gadfly 1.0 also has significant limitations. An active Gadfly 1.0 database keeps al datain (virtual) memory,
and hence a Gadfly 1.0 database is limited in size to available virtual memory. Important features such as
date/time/interval operations, regular expression matching and other standard SQL features are not
implemented in Gadfly 1.0. The optimizer and the query evaluator perform optimizations using properties of
the equality predicate but do not optimize using properties of inequalities such as BETWEEN or less-than. It
ispossible to add "extension views" to a Gadfly 1.0 database, but the mechanism is somewhat clumsy and
indices over extension views are not well supported. The features of Gadfly 2.0 discussed here attempt to
address these deficiencies by providing a uniform extension model that permits addition of alternate table,
function, and predicate implementations.

Other deficiencies, such as missing constructs like"ALTER TABLE" and the lack of outer joinsand NULL
values are not addressed here, although they may be addressed in Gadfly 2.0 or alater release. This paper
also does not intend to explain the complete operations of the internals; it isintended to provide at least
enough information to understand the basic mechanisms for extending gadfly.

Some concepts and definitions provided next help with the description of the gadfly interfaces. [Note: due to
the terseness of this format the ensuing is not a highly formal presentation, but attempts to approach precision
where precision isimportant.]

Page 3 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

The semilattice of substitutions

Underlying the gadfly implementation are the basic concepts associated with substitutions. A substitutionisa
mapping of attribute names to values (implemented in gadfly using kjbuckets.kjDict objects). Here an
attribute refers to some sort of "descriptive variable", such as NAME and avalue is an assignment for that
variable, like "Dave Ascher”. In Gadfly atable isimplemented as a sequence of substitutions, and
substitutions are used in many other ways as well.

For example consider the substitutions

[DRI NKER=>' san]

[DRI NKER=>' saml, BAR=>' cheers']

[DRI NKER=>' woody' , BEER=>' bud']

[DRI NKER=>' saml , BEER=>' mi cki es']

[DRI NKER=>' saml, BAR=>'cheers', BEER=>'mi ckies']
[DRI NKER=>' sam , BEER=>' mi cki es']

[BEER=>' bud', BAR=>'lol as']

[1 # the enpty substitution

[BAR=>' cheers', CAPACI TY=>300]

TIOTMOO®m@>

A trivial but important observation is that since substitutions are mappings, no attribute can assume more
than one value in a substitution. In the operations described below whenever an operator "tries" to assign
more than one value to an attribute the operator yields an "overdefined" or "inconsistent” result.

| nformation Semi-order:

Substitution B is said to be more informative than A because B agrees with all assignmentsin A (in addition
to providing more information as well). Similarly we say that E is more informative than A, B, D, F. and H
but E is not more informative than the others since, for example G disagrees with E on the value assigned to
the BEER attribute and | provides additional CAPACITY information not provided in E.

Joins and Inconsistency:

A join of two substitutions X and Y is the least informative substitution Z such that Z is more informative (or
equally informative) than both X and Y. For example B isthe join of B with A, E isthe join of B with D and

Ejoinl =

[DRI NKER=>' saml, BAR=>'cheers', BEER=>'nmi ckies', CAPAC TY=>300]

For any two substitutions either (1) they disagree on the value assigned to some attribute and have no join or
(2) they agree on al common attributes (if there are any) and their join is the union of al (name, value)
assignments in both substitutions. Written in terms of kjbucket.kjDict operationstwo kjDicts X and Y have a
join Z = (X+Y) if and only if Z.Clean() is not None. Two substitutions that have no join are said to be
inconsistent. For example | and G are inconsistent since they disagree on the value assigned to the BAR
attribute and therefore have no join. The algebra of substitutions with joins technically defines an abstract
algebraic structure called a semilattice.

Name space remapping

Another primitive operation over substitutionsis the remap operation S2 = S.remap(R) where Sisa
substitution and R is a graph of attribute names and S2 is a substitution. This operation is defined to produce
the substitution S2 such that

Name=>Value in S2 if and only if
Nanmel=>Val ue in S and Name<=Nanel in R

or if there is no such substitution S2 the remap value is said to be overdefined.

For example the remap operation may be used to eliminate attributes from a substitution. For example

Page 4 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

E. remap([DRI NKER<=DRI NKER, BAR<=BAR])
= [DRI NKER=>' saml, BAR=>' cheers']

Ilustrating that remapping using the [DRINKER<=DRINKER, BAR<=BAR] graph eliminates all attributes
except DRINKER and BAR, such as BEER. More generally remap can be used in thisway to implement the
classical relationa projection operation. (See [Korth and Silberschatz] for a detailed discussion of the
projection operator and other relational algebra operators such as selection, rename, difference and joins.)

The remap operation can also be used to implement "selection on attribute equality”. For example if we are
interested in the employee names of employees who are their own bosses we can use the remapping graph

RL = [NAME<=NAME, NANME<=BOSS]
and reject substitutions where remapping using R1 is overdefined. For example

S1 = [NAME=>'joe', BOSS=>'joe']

Sl.remap(Rl) = [NAME=>'j oe']

S2 = [NAME=>'fred', BOSS=>'joe']

S2.remap(Rl) is overdefined.
The last remap is overdefined because the NAME attribute cannot assume both the values 'fred' and 'jo€’ in
a substitution.

Furthermore, of course, the remap operation can be used to "rename attributes" or "copy attribute values' in
substitutions. Note below that the missing attribute CAPACITY in B is effectively ignored in the remapping
operation.

B. remap([D<=DRI NKER, B<=BAR, B2<=BAR, C<=CAPACI TY])

= [D=>'sam, B=>'cheers', B2=>'cheers']

More interestingly, a single remap operation can be used to perform a combination of renaming, projection,
value copying, and attribute equality selection as one operation. In kjbuckets the remapper graph is
implemented using a kjbuckets.kjGraph and the remap operation is an intrinsic method of kjbuckets.kjDict
objects.

Generalized Table Joins and the Evaluator Mainloop

Strictly speaking the Gadfly 2.0 query evaluator only uses the join and remap operations asits "basic
assembly language” -- all other computations, including inequality comparisons and arithmetic, are
implemented externally to the evaluator as "generalized table joins.”

A tableis a sequence of substitutions (which in kegping with SQL semantics may contain redundant entries).
Thejoin between two tables T1 and T2 is the sequence of all possible defined joins between pairs of
elements from the two tables. Procedurally we might compute the join as
T1Joi nT2 = enpty
for t1 in T1:
for t2 in T2:

if t1 join t2 is defined:
add t1 join t2 to T1j oi nT2

In general circumstances this intuitive implementation is a very inefficient way to compute the join, and
Gadfly almost always uses other methods, particularly since, as described below, a "generalized table" can
have an "infinite" number of entries.

For an example of atable join consider the EMPLOY EES table containing

[NAME=>' j ohn', JOB=>' executive']
[NAVE=>' sue', JOB=>' progranmer']
[NAME=>"eric', JOB=>'peon']
[NAME=>"bi | | ', JOB=>' peon']

and the ACTIVITIES table containing
[JOB=>' peon', DOES=>'w ndows']
[JOB=>' peon', DCES=>'floors']

[JOB=>' programmer', DOES=>'coding']
[JOB=>' secretary', DOES=>'phone']

Page 5 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

then the join between EMPLOY EES and ACTIVITIES must containining

[NAME=>' sue', JOB=>' programmer', DOES=>'coding']
[NAME=>' eric', JOB=>'peon', DOES=>'w ndows']

[NAME=>'bi | | ', JOB=>' peon', DOES=>'wi ndows']
[NAME=>" eric', JOB=>'peon', DOES=>'floors']
[NAME=>" bi | |', JOB=>'peon', DOES=>'floors']

A compiled gadfly subquery ultimately appears to the evaluator as a sequence of generalized tables that must
be joined (in combination with certain remapping operations that are beyond the scope of this discussion).
The Gadfly mainloop proceeds following the very loose pseudocode:

Subs = [[]] # the unary sequence containing "true"

Wil e sone table hasn't been chosen yet:
Choose an unchosen table with the |east cost join estimte.
Subs = Subs joined with the chosen table

return Subs

[Notethat it is a property of the join operation that the order in which the joins are carried out will not affect
the result, so the greedy strategy of evaluating the "cheapest join next" will not effect the result. Also note
that the treatment of logical OR and NOT aswell as EXIST, IN, UNION, and aggregation and so forth are
not discussed here, even though they do fit into this approach.]

The actual implementation is a bit more complex than this, but the above outline may provide some useful
intuition. The "cost estimation” step and the implementation of the join operation itself are |eft up to the
generalized table object implementation. A table implementation has the ability to give an "infinite" cost
estimate, which essentially means "don't join mein yet under any circumstances.”

| mplementing Functions

As mentioned above operations such as arithmetic are implemented using generalized tables. For example the
arithmetic Add operation isimplemented in Gadfly internally as an "infinite generalized table" containing all
possible substitutions

ARGD=>a, ARGlL=>b, RESULT=>a+b]

Where aand b are all possible values which can be summed. Clearly, it is not possible to enumerate this
table, but given a sequence of substitutions with defined values for ARGO and ARGL1 such as

[AR®D=>1, ARGL=-4]

[AR®D=>2. 6, ARGL=50]

[AR®=>99, ARGL=1]

it is possible to implement a"join operation" against this sequence that performs the same augmentation as a
join with the infinite table defined above:

[ARRD=>1, ARGl=-4, RESULT=-3]

[AR®D=>2. 6, ARGL=50, RESULT=52. 6]

[AR®D=>99, ARGl=1, RESULT=100]

Furthermore by giving an "infinite estimate" for al attempts to evaluate the join where ARGO and ARGL1 are
not available the generalized table implementation for the addition operation can refuse to compute an
"infinite join."

More generally all functions f(a,b,c,d) are represented in gadfly as generalized tables containing all possible
relevant entries
[AR®D=>a, ARGL=>b, AR&=>c, ARG=>d, RESULT=>f(a,b,c,d)]

and the join estimation function refuses all attemptsto perform ajoin unless al the arguments are provided
by the input substitution sequence.

| mplementing Predicates

Page 6 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

Similarly to functions, predicates such as less-than and BETWEEN and LIKE are implemented using the
generalized table mechanism. For example the "x BETWEEN y AND z" predicate is implemented as a
generalized table "containing” all possible

[AR®D=>a, ARGl=>b, AR&2=>c]

where b<a<c. Furthermore joins with this table are not permitted unless all three arguments are available in
the sequence of input substitutions.

Some Gadfly extension interfaces

A gadfly database engine may be extended with user defined functions, predicates, and aternative table and
index implementations. This section snapshots several Gadfly 2.0 interfaces, currently under devel opment
and likely to change before the package is released.

The basic interface for adding functions and predicates (logical tests) to a gadfly engine are relatively
straightforward. For example to add the ability to match aregular expression within a gadfly query use the
following implementation.

fromre inport match

def addrematch(gadflyinstance):
gadflyi nstance. add_predi cate("rematch", natch)

Then upon connecting to the database execute
g = gadfly(...)
édﬂr emat ch(g)

In this case the "semijoin operation™ associated with the new predicate "rematch” is automatically generated,
and after the add_predicate binding operation the gadfly instance supports queries such as

sel ect drinker, beer
fromlikes
where rematch(' b*', beer) and drinker not in
(sel ect drinker fromfrequents where rematch('c*', bar))

By embedding the "rematch" operation within the query the SQL engine can do "more work" for the
programmer and reduce or eliminate the need to process the query result externally to the engine.

In asimilar manner functions may be added to a gadfly instance,

def nodul o(x,vy):
return x %y

def addnodul o(gadflyi nstance):
gadflyi nstance. add_f uncti on(" nodul 0", nodul 0)

g = gadfly(...)
éddm)dul o(Q)
Then after the binding the modulo function can be used whereever an SQL expression can occur.

Adding alternative table implementations to a Gadfly instance is more interesting and more difficult. An
"extension table" implementation must conform to the following interface:

get the kjbuckets.kjSet set of attribute nanes for this table
names = table.attributes()

estimate the difficulty of evaluating a join given known attributes
return None for "inpossible" or n>=0 otherwi se with |arger val ues
indicating greater difficulty or expense

estimate = tabl e. estimate(known_attributes)

return the join of the rows of the table with
the list of kjbuckets.kjDict mappings as a |list of nappings.
resul t mappi ngs = tabl e.join(listofmappings)

In this case add the table to a gadfly instance using
Page 7 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

gadf |l yi nstance. add_t abl e("tabl e_nane", table)

For example to add a table which automatically queries filenames in the filesystems of the host computer a
gadfly instance could be augmented with a GLOB table implemented using the standard library function
glob.glob asfollows:

i mport Kkj buckets

class d obTabl e:
def __init_ (self): pass

def attributes(self):
return kj buckets. kj Set ("PATTERN', "NAME")

def estimate(self, known_attributes):
if known_attributes. menber (" PATTERN'):
return 66 # join not too difficult
el se:
return None # join is inpossible (nmust have PATTERN)

def join(self, |istofmppings):
fromglob inmport glob
result =[]
for min |istof nappi ngs:
pattern = ni" PATTERN']
for nane in glob(pattern):
newmappi ng = kj buckets. kj Dict(m
newnappi ng["NAVE"] = nane
i f newmappi ng. d ean():
resul t. append(newrappi ng)
return result

gadfly_instance. add_t abl e("GLOB", d obTabl e())

Then one could formulate queries such as "list the files in directories associated with packages installed by
guido"
sel ect g.name as fil enane

from packages p, glob g
where p.installer = 'guido' and g.pattern=p.root_directory

Note that conceptually the GLOB table is an infinite table including al filenames on the current computer in
the "NAME" column, paired with a potentially infinite number of patterns.

More interesting examples would allow queriesto remotely access data served by an HTTP server, or from
any other resource.

Furthermore an extension table can be augmented with update methods

tabl e.insert_rows(listofmappings)
tabl e. update_rows(ol dlist, newist)
tabl e.del ete_rows(ol dlist)

Note: at present the implementation does not enforce recovery or transaction semantics for updates to
extension tables, although this may change in the final release.

The table implementation is free to provide its own implementations of indices which take advantage of data
provided by the join argument.

Efficiency Notes

The following thought experiment attempts to explain why the Gadfly implementation is surprisingly fast
considering that it is almost entirely implemented in Python (an interpreted programming language which is
not especialy fast when compared to alternatives). Although Gadfly is quite complex, at an abstract level the
process of query evaluation boils down to a series of embedded |oops. Consider the following nested loops:

Page 8 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

iterate 1000
f(...) # fixed cost of outer |oop

iterate 10
g(...) # fixed cost of mddle |oop
iterate 10
the real work (string parse, matrix nul, query eval...)

h(...)

In my experience many computations follow this pattern where f, g, are complex, dynamic, special purpose
and hissimple, general purpose, static. Some example computations that follow this pattern include: file
massaging (perl), matrix manipulation (python, tcl), database/cgi page generation, and vector
graphics/imaging.

Suppose implementing f, g, h in python is easy but result in execution times10 times slower than amuch
harder implementation in C, choosing arbitrary and debatable numbers assume each function call consumes 1
tick in C, 5ticksin java, 10 ticks in python for a straightforward implementation of each function f, g, and h.
Under these conditions we get the following cost analysis, eliminating some uninteresting combinations, of
implementing the function f, g, and h in combinations of Python, C and java

CosT | FLANG | GLANG | HLANG
111000 | C | C | C
115000 | java | C | C
120000 | python | C | C
155000 | java | java | C
210000 | python | python | C
555000 | java | java | java
560000 | python | java | java
610000 | python | python | java
1110000 | python | python | python

Note that moving only the innermost loop to C (python/python/C) speeds up the calculation by half an order
of magnitude compared to the python-only implementation and brings the speed to within afactor of 2 of an
implementation done entirely in C.

Although this artificial and contrived thought experiment is far from conclusive, we may be tempted to draw
the conclusion that generally programmers should focus first on abtaining a working implementation
(because as John Ousterhout is reported to have said "the biggest performance improvement is the transition
from non-working to working") using the methodology that is most likely to obtain aworking solution the
quickest (Python). Only then if the performance is inadequate should the programmer focus on optimizing
the inner most loops, perhaps moving them to a very efficient implementation (C). Optimizing the outer
loops will buy little improvement, and should be done later, if ever.

This was precisely the strategy behind the gadfly implementations, where most of the inner loops are
implemented in the kjbuckets C extension module and the higher level logicisall in Python. Thisalso
explains why gadfly appears to be "slower" for simple queries over small data sets, but seemsto be relatively
"faster" for more complex queries over larger data sets, since larger queries and data sets take better
advantage of the optimized inner loops.

A Gadfly variant for OLAP?

In private correspondence Andy Robinson points out that the basic logical design underlying Gadfly could be
adapted to provide Online Analytical Processing (OLAP) and other forms of data warehousing and data
mining. Since SQL is not particularly well suited for the kinds of requests common in these domains the
higher level interfaces would require modification, but the underlying logic of substitutions and name
mappings seems to be appropriate.

Conclusion

Page 9 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

The revamped query engine design in Gadfly 2 supports a flexible and general extension methodology that
permits programmers to extend the gadfly engine to include additional computations and access to remote
data sources. Among other possibilities thiswill permit the gadfly engine to make use of disk based indexed
tables and to dynamically retrieve information from remote data sources (such as an Excel spreadsheet or an
Oracle database). These features will make gadfly avery useful tool for data manipulation and integration.

References

[Van Rossum] Van Rossum, Python Reference Manual, Tutorial, and Library Manuals, please look to
http://www.python.org for the latest versions, downloads and links to printed versions.

[O'Neill] O'Neill, P., Data Base Principles, Programming, Performance, Morgan Kaufmann Publishers, San
Francisco, 1994.

[Korth and Silberschatz] Korth, H. and Silberschatz, A. and Sudarshan, S. Data Base System Concepts,
McGraw-Hill Seriesin Computer Science, Boston, 1997

[Gadfly]Gadfly: SQL Relational Database in Python, http://www.chordate.com/kwParsing/gadfly.html

Page 10 Aaron Watters / arw@ifu.net / Integrating Diverse Data Sources with Gadfly 2

