
The Python Module Distribution Utilities:
An Introduction to the Distutils

Gregory P. Ward
Corporation for National Research Initiatives

gward@python.net

Abstract

The Python Module Distribution Utilities, or Distutils for
short, are being developed to address a long-standing
need in the Python community: a standard mecha-
nism for building, distributing, and installing Python
modules—or, more realistically, multi-module distribu-
tions. The Distutils will address this need by providing
a set of classes to implement the normal tasks involved
in such work—build C extensions, process documenta-
tion, install to library directory, compile Python files to
bytecode, etc.—and a standard way for module develop-
ers to give users access to these classes through a simple
Python script included with every distribution. All of this
will work cross-platform, with Unix and DOS/Windows
support included from the beginning, and plans for Mac
OS support in the future.

1 Introduction and Motivation

The need for such a project is clear to anyone who has
installed more than one large module distribution for
Python: they all have their own build mechanisms, re-
quiring users to read and understand different (possibly
complex) instructions for every new distribution, with
no guarantee of working on any platform other than that
used by the developer. The need is even greater for mod-
ule developers, who duplicate each others’ efforts and
spend time working on code that is ancillary to their main
development effort.

The potential payoffs of the Distutils are great, as any-
one who has used Perl over the last couple of years can
attest. One of the major reasons for the success of CPAN
(the Comprehensive Perl Archive Network) is the stan-
dard build mechanism used by all Perl module distribu-
tions. No Perl developer is taken seriously unless any
user can download his distribution, run a few simple
commands:

perl Makefile.PL
make
make test

make install

and be assured of tested, documented new functional-
ity for their Perl system. This system works identically
from the tiniest one-module distribution to the mammoth
Perl/Tk.

The principle drawback to Perl’sMakeMaker sys-
tem (ExtUtils::MakeMaker is the module that underlies
the Makefile.PL script) is that it generates a make-
file, rather than doing its work directly. This reduces
portability (not many Windows users have a Unix-
compatiblemake, even if they do have a C compiler—
and MakeMaker requires make even to build pure-
Perl module distributions) and makes customizing the
build/install steps awkward and unnecessarily compli-
cated.

2 Enter the Distutils

The Distutils interface is strongly influenced by
MakeMaker’s. Superficially, Distutils relies on a script
setup.py instead ofMakefile.PL ; instead of a call
to WriteMakefile , that script consists mainly of a call
to setup . However, the machinery behind that call is
all implemented directly in Python, with no intervening
make step. This means that the action of building or in-
stalling (or whatever else is required) is done immedi-
ately; thus, the user has to specify what he wants to do
on thesetup.py command line.

The canonical example of running a Distutils setup
script is

python setup.py -v install

which takes care of everything required to install a work-
able module distribution. This is planned eventually to
include:

• finding pure Python modules

• compiling and linking C/C++ extension modules

• compiling Java extension modules (for JPython-
friendly module distributions)



• processing documentation to one or more standard
formats

• running a test suite

• installing everything in sensible places (according
to the Python installation and user-supplied prefer-
ences)

Each of these steps is independantly selectable and con-
trollable using arguments to the setup script. Currently
(version 0.1.1), the Distutils only deal with building and
installing pure Python modules and C extensions.

The canonical example of an actual setup script is that
used by the Distutils itself, shown in Figure 1. Note
that most of the arguments tosetup are distribution
meta-data—the only “interesting” data (depending on
your point of view) is the list of packages in the distribu-
tion, which implicitly describes the set of modules to be
built and installed (in this case,distutils/∗.py anddistutils/
command/∗.py). More complex module distributions—
those involving extensions, or listing individual modules
rather than whole packages—take a bit more space to de-
scribe, as outlined in section 4 below.

3 Using the Distutils

There are two group of users currently addressed by
the Distutils: module developers and module installers
(sysadmins or end-users). Generally, writing and edit-
ing the setup.py script is the domain of the developer,
while running it—and using its extensive command-line
options—is for installers. When the Distutils have the
ability to generate “built distributions” (ready-to-install
distributions, with extensions compiled), then a third
community will be added: distributors who take a source
distribution provided by the module developer, and cre-
ate a built distribution for greater convenience to in-
stallers.

Of course, developers will need to run the script too,
both to test it and to create a source distribution. Even-
tually, distributors will use the setup script to create built
distributions from source distributions. Thus, we first
cover the Distutils from the installer’s point of view, and
deal with the developer’s problem of writing the setup
script later, in section 3.2.

3.1 Running the setup script

3.1.1 Basic syntax and global options

The standard incantation for installing a Distutils-based
module distribution is

python setup.py -v install

More generally, the command-line syntax is

setup.py [global-options]
cmd [cmd-options ...]
[cmd [cmd-options ...]] ...

Global options affect the actions of all commands;
currently, there are only two:--verbose (-v ) and
--dry-run (-n ). By default the Distutils are silent,
issuing no output except for errors and warnings.
--verbose countermands this, printing a message for
every action that affects (or would affect, if--dry-run

is supplied) the filesystem. The two are independent,
so -n without -v is pointless: “Don’t do anything, and
don’t tell me what you would have done.”

Another caveat is that some Distutils commands base
their action on the state of the filesystem, which is of-
ten determined by the action of earlier commands. For
example, if you run

setup.py -nv build install

on a fresh module distribution, you’ll get a detailed re-
port of what would happen in thebuild phase—but
since the effects of the ‘build’ phase control theinstall

phase, you won’t see anything relating to installation, be-
cause it doesn’t see any files to install.

3.1.2 The Distutils commands

After the global options come a series of one or more
commands, each with optional command-specific op-
tions. The commands implemented as of this writing are:

build_py “build” pure Python modules
build_ext build C/C++ extension modules
build build everything
install_py install pure Python modules
install_ext install extension modules
install install everything
dist create source distribution
Commands may run other commands: thebuild

command runsbuild_py and thenbuild_ext , be-
cause that is what “everything” currently means; the
install command first runsbuild (because you can’t
install what you haven’t built), and theninstall_py

andinstall_ext . Distutils is smart enough not to run
the same command twice, and the commands are gener-
ally smart enough not to do redundant work in their run.

This illustrates why, if all you want to do is install a
module distribution, all you have to do is

python setup.py -v install

—the install command runsbuild , which runs
build_py andbuild_ext to build everything, and then
installs everything withinstall_py and install_

ext . (Actually, both build and install are smart



from distutils.core import setup

setup (name = "Distutils",
version = "0.1.1",
description = "Python Module Distribution Utilities",
author = "Greg Ward",
author_email = "gward@python.net",
url = "http://www.python.org/sigs/distutils-sig/",

packages = [’distutils’, ’distutils.command’])

Figure 1: Thesetup.py script distributed with the Distutils.

enough that they only runbuild_py or install_py

if there are pure Python modules in the distribution, and
likewise with build_ext and install_ext . That’s a
minor optimization, though, as it mainly saves the unnec-
essary import of all the code for that operation—which,
in the case of building extensions, is a fair chunk.)

In the absence of command options (described mo-
mentarily), the following are all nearly equivalent:

setup.py -v install
setup.py -v build install
setup.py -v build_py build_ext install
setup.py -v build_py build_ext \

install_py install_ext

(The main difference is that when you explicitly spec-
ify a command, the module that implements it will be
imported—which can cause a noticeable delay in the
case ofbuild_ext .)

3.1.3 Command options

The actions of every command are controlled by a set
of options. Some command options can be specified on
the command-line of the setup script; others may only
be supplied in the setup script itself. This section only
covers the command options that may be supplied by the
installer, i.e. on the command-line—the remaining com-
mand options are generally the domain of the module
developer, so will be covered in section 3.2 below.

The vast majority of command options deal with
where to put various files. For instance, thebuild*

commands let you specify where to build to, and the
install* commands let you specify where to install to.

Command option names are only unique within their
command, so multiple commands may have (e.g.) a
build_base option. All command options have a
long name (e.g. build_base in the setup script or
--build-base on the command line), and many have
a one-letter form that appears only on the command line.
There’s no guarantee that the same option name has the
same one-letter form (or even the same meaning) across

different commands, although this is certainly a desirable
goal for command implementors.

An exhaustive reference of all command options is in-
cluded with the Distutils documentation; here we’ll con-
centrate on examples to illustrate some common cases.
First, thebuild_base option: by default, the Distu-
tils build* commands put ready-to-install modules and
extensions into thebuild/ subdirectory of the distribu-
tion root. (Thedistribution root is the directory where
setup.py exists and is run from, and most files and di-
rectories referenced by the Distutils are relative to this di-
rectory. Thus, you can generally read “distribution root”
as “current directory”.) If you want these files put some-
where else, use thebuild_base option tobuild :

setup.py -v build \
--build-base=/tmp/pybuild

In this case, pure Python modules will be put in/tmp/
pybuild/lib, and extension modules in/tmp/pybuild/platlib.
If you want exact control over these two directories, you
can specify them individually to thebuild command:

setup.py -v build \
--build-lib=/tmp/pybuild.shared \
--build-platlib=/tmp/pybuild.plat

In this case, you don’t need to specifybuild_base ,
since it is only used to generatebuild_lib andbuild_

plat .
Of course, if you then attempt to install the mod-

ule distribution withsetup.py -v install , it won’t
work as intended:install looks in the default build di-
rectory (./build), but the ready-to-install built files aren’t
there. So your files will be re-built to./build instead of
fetched from/tmp/pybuild (or wherever). Since you’re
running install separately frombuild , you have to
tell it the build directories separately. For instance, the
install command to go with the firstbuild command
above would be

setup.py -v install \
--build-base=/tmp/pybuild

and to go with the secondbuild command:



setup.py -v install \
--build-lib=/tmp/pybuild.shared \
--build-platlib=/tmp/pybuild.plat

(Note that the great similarity of these commands is due
not to some conspiracy within the Distutils, but to the
deliberate choice of the same option names for the same
purposes across the two commands. Nothing enforces
this design principle except common sense!)

Obviously, it’s preferable to supply the build directory
only once, as in:

setup.py build \
--build-base=/tmp/pybuild install

or, sinceinstall impliesbuild ,

setup.py install
--build-base=/tmp/pybuild

but note that this:

setup.py build install \
--build-base=/tmp/pybuild

does not work—when you explicitly specify thebuild

command in this way, its options are decidedbeforethe
options for theinstall command are parsed. (This
might be considered a bug—or a design flaw that would
be nice, but tricky, to fix.)

Of course, you may be perfectly happy with the default
build directories, but want to install elsewhere—e.g., if
you don’t have superuser privileges on a Unix system,
you’ll probably want to install to your home directory.
Naturally, this is an option—well, several options—to
the install command:

setup.py -v install
--prefix=/home/greg \
--exec-prefix=/home/greg

will install both pure Python modules and exten-
sion modules under/home/greg/lib/python1.5 (assuming
Python 1.5, of course).

If you want more precise control, you can spec-
ify the install_site_lib and install_site_
platlib options directly:

setup.py -v install \
--install-site-lib=\

/home/greg/lib/python \
--install-site-platlib=\

/home/greg/lib/python.plat

Note that the “lib” and “platlib” directories are com-
pletely independent; if you want to control both of them,
you must specify both (or bothprefix and exec_

prefix ). This is a feature (I think).

3.2 Writing the setup script

In order to understand how to write setup scripts, you
have to understand how they’re run—so if you skipped
straight down here, you should skip right back up again
and read section 3.1.

Now that you know about commands and command
options, it is time to reveal more of the truth. (The full
truth cannot be revealed since the Distutils are a work-
in-progress, and no one yet knows the full truth.) Specif-
ically, the setup script command-line is only one pos-
sible source for command options. Two other possible
sources are in the setup script itself, as keyword argu-
ments tosetup() , and as elements in theoptions ar-
gument tosetup() . (The distinction may seem pedan-
tic, but it matters in some circumstances.) Undoubtedly
more option sources will be revealed as work on the Dis-
tutils progresses.

3.2.1 Command options—the theory

The first option source is, as described above, the com-
mand line to the setup script. Whatever happens, this op-
tion source is the last word; options supplied here should
override all other sources (so that the developer, distrib-
utor, or installer running the setup script has the final
word). However, not all options can appear on the com-
mand line: of course we allow the installer to specify the
build and installation directories, but they don’t get to
specify the extension modules to build or what package
they belong to.

That sort of information—what’s included in the mod-
ule distribution and where it belongs in the space of
Python modules—goes in the setup script. However,
there aretwo sources of options in the setup script, and
to understand why you need to understand the difference
betweendistribution optionsandcommand options. The
setup script in Figure 2 illustrates a microcosm of the
Distutils option universe. First, (almost) all keyword
arguments tosetup() are distribution options, which
wind up as attributes of theDistribution object that un-
derlies everything. (But that’s an implementation detail
which should be reserved for section 4 below.) A few
special arguments tosetup() are, well, special and are
not treated as distribution options:options is one of
these.

The other keyword arguments here—name, version ,
description , and py_modules —are all distribution
options. py_modules is not apure distribution option,
though, as it becomes a command option (modules )
to guide the actions of thebuild_py command. py_

modules is thus called analias option, because it is a
stand-in for a command option,build_py.modules .

Finally, the options argument lets you supply any



setup (name = "foobar"
version = "1.1",
description = "Modules to foo bars and bar foos",

py_modules = [’foobar.foo’, ’foobar.bar’],
options = { ’build’: { ’build_base’: ’blib’ } })

Figure 2: A hypothetical setup script that illustrates several flavours of Distutils command options.

arbitrary command option. The example shown here
makes things look more familiar to Perl refugees by
building to ./blib instead of./build. Note that this sort
of mischief is anti-social and officially Frowned Upon,
but it is possible. Setting options in theoptions dic-
tionary is deliberately awkward: it should not be needed
often, and if a particular command option needs to be
set frequently for many module distributions, an alias
option should be created for it. Also, note that options
from theoptions dictionary generally override alias op-
tions (depending on how the particular command is im-
plemented), so before you go setting the list of extension
modules or packages this way, you had better know ex-
actly what you are doing and what ramifications it will
have.

3.2.2 Command options in practice

Using the Distutils boils down to specifying the com-
mands to run and the options that guide them. The de-
veloper’s job in writing the setup script is to supply the
options that the installer cannot know: distribution meta-
data, which modules and extensions are present in the
distribution, and where they go in the space of Python
modules.

All of these were illustrated in the example in sec-
tion 2: the distribution meta-data is contained in the
name, version , description , author , author_

email , andurl distribution options. (maintainer and
maintainer_email may be supplied in place of, or in
addition to, theauthor options.)

In the case of a fully “package-ized,” pure-Python
distribution like the Distutils, the rest is simple: the
packages option (an alias forbuild_py.packages )
lists the packages in which pure Python modules can
be found. Thebuild_py command assumes the most
sensible directory layout, namely that modules in the
distutils package can be found in thedistutils subdirec-
tory of the distribution root. Overriding this is easy with
thepackage_dir option, for example:

setup (
...
packages = [’foo’, ’foo.bar’]
package_dir = { ’foo’: ’src’ }

)

tells the Distutils to look forfoo modules insrc (under
the distribution root), andfoo.bar modules insrc/bar.

If a module distribution isn’t yet distributed in package
form, just use the empty package name: for example,

setup (...
packages = [’’])

will install ∗.py from the current directory. Of course, it’s
not good form to put a bunch of modules right into the
installation directory (prefix /lib/python1.5/site-packages
on Unix or prefix on DOS/Windows)—collections of
top-level module distributions should get their own direc-
tory, and a path configuration (.pth) file to add it tosys.
path at run-time. This is handled by theinstall_path
option (an alias forinstall.install_path ). Con-
sider a distribution that ships a bunch of top-level mod-
ules insrc, and wants to install them tosite-packages/foo
with foo.pth:

setup (
...
packages = [’’],
package_dir = {’’: ’src’}
install_path = ’foo’

)

If for some reason the installation directory and.pth file
should have different names,install_path can be a
tuple or comma-delimited string (the tuple/string dual-
ity is necessary to allow this option to be set on the
command-line as well):

setup (
...
packages = [’’],
package_dir = {’’: ’src’}
install_path = (’foo’, ’foo/bar/baz’)

)

will put the distribution’s modules all the way down in
site-packages/foo/bar/baz, and putfoo.pth—referencing
foo/bar/baz—right in site-packages.

(Actually, all of these references tosite-packages
should be to the installation option that controls the
base installation directory—currentlyinstall_site_

lib for pure Python module distributions—but you get
the idea.)



If you need to specify pure Python modules explic-
itly, then you can’t use thepackages option at all—you
needpy_modules (an alias forbuild_py.modules ).
For example, if your source distribution includes mod-
ulesfoo.mod1 andfoo.mod2 in thefoo directory, use this:

setup (
...
py_modules = [’foo.mod1’, ’foo.mod2’]

)

with the usual addition ofpackage_dirs if you have a
non-standard directory layout.

Whether you usepackages or py_modules , the
Distutils will take care of finding and installing the

init .py file for each package, and will warn at instal-
lation time if any are missing. It willnot generate an

init .py for you if you forget it.
Things get a bit more interesting when you throw ex-

tension modules into the mix. First of all, keep in mind
that packages affectsonly pure Python modules; ex-
tension modules are listed separately and have their own
way of being put into packages. Extension modules must
always be listed explicitly in theext_modules option.
This option is a list of tuples, where each tuple supplies
an extension name and the information necessary to build
the extension. For example:

name = ’DateTime.mxDateTime.mxDateTime’
src = ’mxDateTime/mxDateTime.c’
setup (

...
ext_modules =

[(name, { ’sources’: [src] }
)]

)

is a first approximation at building themxDateTime ex-
tension from themxDateTimedistribution. Note that the
extension name is a fully-qualified module name; if your
distribution has many extensions all in the same pack-
age, it might be more convenient to specify that package
separately withext_package :

pkg = ’DateTime.mxDateTime’
name = ’mxDateTime’
src = ’mxDateTime/mxDateTime.c’
setup (

...
ext_package = pkg,
ext_modules =

[(name, { ’sources’: [src] }
)]

)

In many cases, it will be necessary to supply ex-
tra information to the C compiler. For instance, the
mxDateTime extension won’t compile unless the com-
piler knows where to find its header file. This is one
of many extra bits of optional information that can be

supplied in the “build info” dictionary that must always
containsources :

name = ’DateTime.mxDateTime.mxDateTime’
src = ’mxDateTime/mxDateTime.c’
setup (

...
ext_modules =

[(name,
{ ’sources’: [src]

’include_dirs’: [’mxDateTime’] }
)]

)

In this case, we simply instruct the compiler to look for
header files in themxDateTime subdirectory.

Of course, extension modules can depend on multi-
ple source files—which is whysources is a list of file-
names. For example, the Python Imaging Library (PIL)
setup script might include

ext_modules =
[(’_imaging’,

{ ’sources’:
[’_imaging.c’,

’decode.c’,
... ,
’path.c’]

}
)]

(omitting several source files). This isn’t actually
enough, though: the header files must be found, and ad-
ditionally the Cimaging library must be linked in:

ext_modules =
[(’_imaging’,

{ ’sources’:
[’_imaging.c’,

’decode.c’,
... ,
’path.c’]

’include_dirs’: [’libImaging’],
’library_dirs’: [’libImaging’],
’libraries’: [’Imaging’]

}
)]

(This ignores the possibility of linking PIL with Tcl/Tk,
the IJG JPEG library, and the zlib compression library.)

4 Inside the Distutils

4.1 Core Classes

The core Distutils classes areDistribution andCommand,
both found in thedistutils.core module. Together, these



two classes coordinate everything that happens in build-
ing, distributing, and installing a Python module distri-
bution.

The details of how they are deployed differ consider-
ably. Distribution has a sole instance, created either in
the setup() function on behalf of the setup script, or
directly in the setup script (when more customization is
needed than is convenient in a single call tosetup() ).

Command is an abstract class that is never directly in-
stantiated; rather, a number of subclasses—thecommand
classes—are defined in thedistutils.command.∗modules,
each of which is instantiated in a controlled fashion by
Distribution. In fact, creatingcommand objects(instances
of command classes) is so tightly controlled that each
command class is effectively a singleton; aDistribution
instance will never create multiple instances of any given
command class.

4.1.1 TheDistribution class

TheDistribution object represents the module distribution
being operated on. Normally, the setup script calls the
setup() function (also located indistutils.core), which
then creates theDistribution instance and starts working
on it. More complex module distributions might prefer
to instantiateDistribution directly, which is not covered
here.

Thus, the simplest possible setup script is

from distutils.core import setup
setup ()

which does nothing interesting, except possibly die
from lack of arguments to the script. (Lack of argu-
ments tosetup() is not necessarily an error; an empty
command-line is.) However, it is instructive to consider
what happens in this simplest possible case.

First, of course, theDistribution instance is created.
A key feature of this creation is that (almost) all of the
arguments passed tosetup() —which are all keyword
arguments—are passed to theDistribution constructor,
again as keyword arguments.

The next step should be to find and parse any configu-
ration files relating to this module distribution. However,
the question of configuration files for the Distutils has
not yet been adequately considered, so the feature isn’t
there.

Thus, the next step is really to parse the command
line. (Note the order of operations, intended so that com-
mand line options will override config file(s), which in
turn override the arguments hard-coded insetup.py .)
The Distutils command-line syntax—or, if you prefer,
the command line syntax of the setup script—was cov-
ered in section 3.1.1; to review:

setup.py [global-options]

cmd [cmd-options ...]
[cmd [cmd-options ...]] ...

Parsing the Distutils command line is an incremental job:
first, parse global options; then, get the first command,
and parse its options; continue until all arguments are
consumed. If no commands are found, that’s a fatal error
(hence the likelihood of dying from lack of arguments
above).

First, global options are easy: there is a known, fixed
set of them determined by theDistribution class (see sec-
tion 3.1.1). Knowing which options are valid for a par-
ticular command is a bit trickier. Since command ob-
jects can actually be of anyCommand subclass (a key
to the Distutils’ extensibility), there’s no global registry
of command-specific command-line options. Thus, each
command class has to supply its valid command-line op-
tions; in fact, as we traverse the script arguments, we
create each command object as we come upon its corre-
sponding argument on the command-line. We then query
that command object for its valid set of command-line
options, using theoptions attribute.

4.1.2 TheCommand class

While there is only oneDistribution instance in a given
Distutils run, there will be manyCommand instances: or
rather, there will be instances of manyCommand sub-
classes, asCommand is not meant to be directly instanti-
ated. It defines the interface that must be implemented by
concrete command classes, and provides utility methods
to help them do their job consistently and with minimal
duplicated code.

Command objects exist mainly to be run, i.e. to have
their run() method invoked. This is where the real
work of a command is done: for instance, this is where
thebuild_ext command compiles and links extension
modules, or where theinstall_py command copies
pure Python modules to the installation directory. Usu-
ally, though, some initial setup work is required before
the command can be run: the command has to know
which extensions to build and how to build them, which
modules to install and where to install them, etc.

This, of course, is all controlled by thecommand
optionsexplained in sections 3.1.3 and 3.2.2. Setting
the options for each command object is the shared job
of two methods that must be implemented by every
command class:set_default_options() andset_

final_options() . set_default_options() sets
the default values for all options; generally, it consists
of a series ofself.foo = None assignments (for
each command optionfoo ). set_final_options() is
called only after all external sources of options (currently
just the command-line, someday configuration files as



well) have been processed. Its responsibility is to set the
value of any options thatweren’t set from an external
source.

Command instances can be created in a variety of
ways, one of which was described above (create a com-
mand object when the command is mentioned in the
setup script command-line). Commands not mentioned
on the command line might still be instantiated; it just
happens later, and only on demand. For example, the
install command always runsbuild before attempt-
ing to install. It does so by invoking its ownrun_

peer() method, which (unlessbuild has already been
run) looks up thebuild command object, creating it if
necessary, and invokes itsrun() method.

Similarly, install also runsinstall_py (but only
if there are any pure Python modules) andinstall_ext

(but only if there are any extension modules).
Commands can also indirectly cause the instantia-

tion of other commands by attempting to get options
from those commands. Again referring to theinstall

command, before it runs it must figure out the build
directories—where thebuild_* commands put their
output files. This is done by looking up the relevant op-
tions in thebuild command object, which must be cre-
ated if it didn’t already exist. (This means that thebuild

command object will always exist wheninstall gets
around to running it, since it is referred to for option val-
ues prior to running.)

4.2 Command classes

Each Distutils command is implemented by a command
class, which must implement the interface described by
Command—usually by subclassing it. The standard Dis-
tutils commands (listed in section 3.1.2) are named and
organized in a predictable way, so that it’s easy to im-
port the module and instantiate the class without having
a global registry of Distutils commands.

In particular, the standard commandfoo_bar (if
there were such a command) would be implemented by
the classFooBar in the distutils.command.foo bar mod-
ule. The ability to extend the system with non-standard
command classes is built-in via the distribution option
cmdclass : this is a dictionary that maps command
names to command classes (not class names, but actual
class objects). This will allow developers to override the
default behaviour of standard commands as well as to
add their own custom commands to the Distutils.

4.3 Compiler abstraction model

A key to the Distutils’ portability and ability to com-
pile extensions on multiple platforms is itscompiler ab-
straction model. This is simply an abstract base class,

CCompiler (in the distutils.ccompiler module) that im-
plements an object-oriented interface to an idealized
C/C++ compiler. The model handles all the usual bu-
reaucracy involved in instructing a C/C++ compiler, such
as specifying header search directories, macros to de-
fine/undefine, library search directories, and libraries to
link in—but it handles them via method invocations and
instance attributes rather than command-line options to a
separate program. Of course, there are also methods to
compile a set of source files and to link them to shared
or static libraries; there will soon have to be a method to
link to a binary executable, as well (in order to build a
new static Python interpreter).

Currently, this abstract base class has two concrete
subclasses,UnixCCompiler and MSVCCompiler. Both
of these translate attribute values supplied by method
calls into command-line arguments for, respectively, the
traditional Unix compiler command-line and Microsoft
Visual C++’s command-line interface. The compiler
model should extend to platforms that don’t even have
a command-line, such as the Macintosh, but this remains
to be demonstrated.

4.4 Utility modules and classes

Finally, the Distutils includes a number of modules of
possibly broader utility, all in thedistutils package. These
include:

fancy getopt front-end to the standardgetopt mod-
ule, driven by a table (list of tuples)
that ties long and short options together
with help text

spawn cross-platform (Unix and Windows at
least) mechanism for running exter-
nal programs: a front-end tofork()

and execvp() on Unix, and to
spawnvp() on Windows

text file providesTextFile, a file-like object that
returns lines from a file after deal-
ing with comments, “backslash join-
ing”, stripping trailing and/or leading
whitespace, etc.

util various filesystem utilities: copy files,
copy directory trees, move files, com-
pare timestamps on individual files
and groups of files, create directories
“deeply”, etc.

These will certainly be useful to developers writing fancy
setup scripts (or new Distutils commands), and could
well be handy in other contexts.



5 Availability

Up-to-date information on the Distutils, including mail-
ing list archives, access to the CVS repository, and down-
loads of the latest version, can all be found at

http://www.python.org/sigs/distutils-sig/

6 Conclusions and Future Plans

The Python Module Distribution Utilities are well on the
way to being a general, powerful, extensible framework
for building, distributing, and installing Python module
distributions. The current release as of this writing (ver-
sion 0.1.1) has the demonstrated ability to build and in-
stall several real-world Python module distributions (Nu-
meric Python, mxDateTime, PIL, and of course the Dis-
tutils themselves).

Development is ongoing. A number of features are
needed before the Distutils is ready to take over the
world, including support for building external C/C++ li-
braries, creation and maintenance of a database of mod-
ules installed on a given system, checking developer-
supplied prerequisites for a distribution, and a standard
mechanism for running test suites (and a methodology
for writing them).

Once these features are a reality, the Python world will
have made a major step forward to achieving “plug and
play” reusability, a goal that many language communities
strive for, but few have achieved.


