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Abstract

The Zope Object Database provides an object-oriented 
database for Python that provides a high-degree of 
transparency.  Applications can take advantage of object 
database features with few, if any, changes to 
application logic.  Usage of the database is described 
and illustrated with an example.  Features such as a 
plug-able storage interface, rich transaction support, 
undo, and a powerful object cache are described.

1. Introduction

Many applications need to store data for use over 
multiple application executions, or to use more data than 
can practically be stored in memory.  A number of 
approaches can be used to manage large amounts of 
persistent data. Perhaps the most common approach is to 
use relational database systems.  Relational database 
systems provide a simple model for organizing data into 
tables, and most can handle large amounts of data 
effectively.  Because of their simple data model, 
relational databases are easy to understand, at least for 
small problems.  Unfortunately, relational databases can 
become quite cumbersome when the problem domain 
does not fit a simple tabular organization.

An advantage of relational database systems is their 
programming-language neutrality. Data are stored in 
tables, which are language independent.  An application 
must read data from tables into program variables 
before use and must write modified data back to tables 
when necessary.  This puts a significant burden on the 
application developer.  A significant amount of 
application logic is devoted to translation of data to and 
from the relational model.

An alternative is to retain the tabular structure in the 
program.  For example, rather than populating objects 
from tables, simply create and use table objects within 
the application.  In this case, high-level tools can be 
used to load tables from the relational database.  With 
sufficient knowledge of database keys, tools could 
automate saving data when tables are changed.  A 
disadvantage of this approach is that it forces the 
application to be written to the relational model, rather 
than in an object-oriented fashion.  The benefits of 
object orientation, such as encapsulation and association 
of logic with data are lost.

Object databases provide a tighter integration between 
an applications object model and data storage.  Data are 
not stored in tables, but in ways that reflect the 
organization of the information in the problem domain.  
Application developers are freed from writing logic for 

moving data to and from storage1.

The purpose of this paper is to present an object 
database for Python, the Zope Object Database 
(ZODB).  The goals of the paper are to describe the use 
and benefits of the ZODB, provide a high-level 
architectural view, to highlight interesting technical 
issues, and to describe recent and future developments.

2. Application development

This part of the paper provides an introduction to 
application development with the ZODB.

2.1 Example: an issue tracking system

This section will present a simple issue tracking system 
as a means for showing how the Zope object database 
can be used.

Consider an application that manages a collection of 
issues.  The data for this application might be 
implemented in an ’Issue’ module, as shown in 
Example 1:

There is an Issues class that manages a collection of 
issues and a text index to support full-text search for 
issues.  An issue may have comments, which may have 
comments, and so on, recursively.  The text for an issue 
and it’s comments is indexed so that issues can be 
searched for based on issue and comment text.

1. Many object databases, fall short on this last point, 
as developers must write serialization logic, 
although this logic is at least encapsulated.



An application for managing issues will typically be 
some sort of server or long-running application, like a 
web application or an interactive graphical application.  
For brevity, the application will be presented here as a 
collection of scripts that operate on issues data.

A script for adding issues might be along the lines of 
that shown in Example 2 

An obvious problem with this script is that it recreates 
the issue database each time. Obviously, some logic 
needs to be added to make data persistent between script 
invocations.  The data could be stored in a relational 
database, but it would be  cumbersome to map the 
hierarchical issue data to a relational model, let alone 
the text index, which is a "black box" from the point of 
view of the issue application.

A simple way to add persistence is to save the data in a 
file in Python pickle format (Example3 )

The data are stored in the file, issues.pickle.  
When we start the application, the data are read by 
opening the file, creating an unpickler on it, and calling 
the load method on the unpickler to load the data.  
After adding the issue, the data must be written to the 
file by opening the file for writing, creating a pickler on 
it, and calling the pickler’s dump method to save the 
data.

Before calling the add script, the data file must be 
created with an initialization script (Example 4). 

This approach is very simple, but does not scale very 
well.  The entire database is read or written every time 
an issue is read or saved. A better approach is to use the 
ZODB.  To do this, there are a few changes that need to 

from TextIndex import TextIndex

class Issues:

  def __init__(self):
    self._index=TextIndex()
    self._issues=[]

  def addIssue(self, issue):
    issue.setId(len(self._issues))
    self._issues.append(issue)

  def __getitem__(self, i): 
    return self._issues[i]

  def search(self, text):
    return map(
       self.__getitem__,
       self._index.search(text))

class Comment:
  _text=’’
    
  def __init__(self, text, parent):
    self._parent=parent
    self.edit(text)
    self._comments=[]

  def text(self):
    return self.text

  def edit(self, text):
    self._unindex(self._text)
    self._text=text
    self._index(self._text)

  def _index(self, text):
    self._parent._index(text)

  def _unindex(self, text):
    self._parent._unindex(text)

  def __getitem__(self, i): 
    return self._comments[i]

  def comment(self, text):
    self._comments.append(
        Comment(text, self))

class Issue(Comment):
  _id=None

  def __init__(self, title, text, 
               parent):
     Comment.__init__(self, text, 
        parent)
     self._title = title

  def setId(self, id):
    self._id=id
    self._index(self._text)

  def title(self): return self._title
    
  def _index(self, text):
    if self._id is not None:         
       self._parent._index(
         text, self._id)
    
  def _unindex(self, text):
    if self._id is not None:
        self._parent._index(
          text, self._id)

Example 1. A simple Issue module.

import Issue, sys

issues=Issue.Issues()

issue=Issue.Issue(
   sys.argv[1], sys.argv[2], 
   issues)
issues.addIssue(issue)

Example 2. A script for adding an issue

import Issue, sys, pickle, os

issues=pickle.Unpickler(
 open(‘issues.pickle’)).load()

issue=Issue.Issue(
   sys.argv[1], sys.argv[2], 
   issues)
issues.addIssue(issue)

pickle.Pickler(
  open(‘issues.pickle’,’w’)
  ).dump(issues)

Example 3. A script for adding an issue and saving the 
issue data in pickler format



be made to the application.  First, the application classes 
must be changed to mix-in a special persistence class 
(Example 5)

Changing the application classes is straightforward. The 
first change needed is to add the 
Persistence.Persistent base class.

We need to add a line to the addIssue and comment 
methods  to notify the persistence system that objects 
have changed:

self._p_changed=1

This change is necessary because we have modified a 
list sub-object that doesn’t participate in persistence.  
The normal automatic detection of object changed 
doesn’t work in this case. See “The rules of persistence” 
later in this paper for further discussion of this change.

The text index is a bit more problematic.  We need a 
modified version of the text index that mixes in the 
persistent base class as well. This is shown by using a 
different version of the text index. Modifying the text 
index  is problematic because the text-index is outside 
the application and it would be preferable if the text 
index did not have to be changed. 

Finally, the application scripts must be modified. The 
new add script is shown in example 6.

This add script is similar to the previous one except for a 
few details.  First, note the order of the imports. In 
particular, the application module, Issue, is loaded 
after ZODB. In this case, the import order is important.  
The Issue module imports the Persistence 
module. This module is initially empty. When ZODB is 
imported, it populates the Persistence module with 

import Issue, pickle

pickle.Pickler(
  open(‘issues.pickle’,’w’)
  ).dump(Issue.Issues())

Example 4. A script for initializing a pickle file with an 
empty issues collection.

import sys, ZODB, ZODB.FileStorage
import Issue

db=ZODB.DB(
       ZODB.FileStorage.FileStorage(
         ‘issues.fs’))
issues=db.open().root()[‘issues’]

issue=Issue.Issue(
         sys.argv[1], sys.argv[2], 
        issues)
issues.addIssue(issue)

get_transaction().commit()

Example 6. A script for adding an issue by updating an 
issues collection on a ZODB.

import PTextIndex, Persistence

class Issues(Persistence.Persistent):

  def __init__(self): 
    self._index=TextIndex()
    self._issues=[]

  def addIssue(self, issue):
    issue.setId(len(self._issues))
    self._issues.append(issue)
    self._p_changed=1

  def __getitem__(self, i): 
    return self._issues[i]

  def search(self, text):
    return map(
      self.__getitem__, 
      self._index.search(text))

class Comment(Persistence.Persistent):
  _text=’’
    
  def __init__(self, text, parent):
    self._parent=parent
    self.edit(text)

  def text(self): return self.text

  def edit(self, text):
    self._unindex(self._text)
    self._text=text
    self._index(self._text)

  def _index(self, text):
    self._parent._index(text)
    
  def _unindex(self, text):
    self._parent._unindex(text)

  def __getitem__(self, i): 
    return self._comments[i]

  def comment(self, text):
     self._comments.append(
       Comment(text, self))
    self._p_changed=1

class Issue(Comment):
  _id=None

  def __init__(self, title, text, parent):
    Comment.__init__(self, 
                     text, parent)
    self._title = title

  def setId(self, id):
    self._id=id
    self._index(self._text)

  def title(self): return self._title
    
  def _index(self, text):
    if self._id is not None:
      self._parent._index(
        text, self._id)
    
    def _unindex(self, text):
      if self._id is not None:
        self._parent._index(
           text, self._id)

Example 5. A simple issue module modified to use the 
ZODB



classes, like Persistent, that depend on ZODB.  
This sequence of imports may seem odd, but it allows 
ZODB to be renamed without affecting much 
application code. This was very useful when switching 
from the older version of the object database, 
BoboPOS, to ZODB.

Rather than loading all of the data from a pickle file, we 
open the object database, open a connection to the 
database, and get the root object, named "issues" from 
the database.  The Zope object database allows a 
number of different kinds of low-level storage managers 
to be used.  We must first create a storage object, and 
then create a database object using the storage object.  In 
this example, we used a "file" storage, which is a ZODB 
storage that stores data in a single file.  Other storages 
are or soon will be available, such as dbm file storages 
and storages that use relational databases.

It’s important to note in this example, that we’re only 
loading a small part of the database into memory.  
Essentially, only the issue container and issue place-
holders are loaded into memory.  Issue state and issue 
comments are not loaded.

Rather than dumping the entire database as a single 
pickle, we simply commit a transaction.  This is an 
important feature of the ZODB.  The application 
programmer does not have to be aware of the objects 
that were changed in a computation.  The application 
programmer simply needs to define when work should 
be saved.  This is especially important in object-oriented 
applications.  For an application programmer to control 
what objects need to be saved would require knowledge 
of object internals.  For example, a user of issues would 
need to know that a Issues objects contain indexes 
that needed to be saved when an issue was added or 
modified.

ZODB installs a function, get_transaction 
function in the Python __builtins__ module. This 
is done so that transaction-aware tools can use a 
transaction manager without depending on specific 
database implementations.  To commit the current 
transaction, call get_transaction to get the current 
transaction, and then call the transaction’s commit 
method to commit the transaction, as shown in  
example 6.

As when storing data in a pickle file, we need a script 
that initializes the database (example 7).

In a long running application, such as a web application 
or a graphical application, database open and creation 
are typically performed during application start-up, so 
this code is not required in every part of the application 
that modifies data.  Further, transaction boundaries are 

usually defined outside of the ordinary application code.  
In a web application, a transaction might be committed 
at the end of a web request, as is done in Zope. In a 
graphical application, there might be menu options  for 
"saving work" that commits a transaction.  Typically, 
application code doesn’t need to define transaction 
boundaries.

Usually, business logic doesn’t contain any database 
related code, with the exception of mixing in the 
Persistent base class in class statements.  There are 
some cases when the application developer does have to 
be aware of persistence issues.  These cases will be 
discussed in later sections of the paper.

2.2 Database organization

The ZODB database spreads object storage over 
multiple records.  Each stored persistent object has it’s 
own database record.  When an object is modified and 
saved to the database, only the object’s record is 
affected.  Records for unchanged persistent sub-objects 
are unaffected.  Each object has a persistent object id 
that uniquely identifies the object within the database 
and is used to lookup object data in the database.

The database has a designated "root" object, which 
provides access to application root objects by name.  An 
application typically provides a single root object as in 
the example given earlier in this paper.  All other objects 
are accessed through object traversal from the root, 
where object traversal might be performed by attribute 
access, item access, or method call.

There is no application level organization imposed by 
the ZODB.  There is no database-imposed notion of 
tables or indexes.  Applications are free to impose any 
organization on the object database.  One could 
implement a relational database on top of the ZODB.  
Indexes are readily implemented on top of ZODB.  Zope 
includes a number of high- and low-level indexing 
facilities built on the ZODB.

import ZODB, ZODB.FileStorage
import Issue

db=ZODB.DB(
   ZODB.FileStorage.FileStorage(
      ‘issues.fs’, create=1))

root=db.open().root()
root[‘issues’]=Issue.Issues()

get_transaction().commit()

Example 7. A script for initializing a ZODB with an 
issues collection.
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2.3 The rules of persistence

Most applications require few changes to use the 
ZODB.  There are, however, a few rules that must be 
followed.  This section details what these rules are and 
the reasons behind them.

A major goal of the ZODB is to make persistence as 
automatic as possible.  Infrastructure exists to automate 
two critical tasks:

1. Notifying the persistence system when an object has 
changed

The persistence system keeps track of changes to 
objects so that only changed objects are saved when 
a transaction is committed and so that old state can 
be restored when a transaction is aborted.

2. Notifying the persistence system when an object has 
been accessed

When dealing with large databases, the persistence 
system moves objects into memory when they are 
needed and out of memory when they are no longer 
being used.  To know when an object is no longer 
used, it is necessary to track whether an object is 
being accessed.

To allow the infrastructure to automate these tasks, the 
following rules must be followed:

1. Persistent object classes must subclass persistent 
object classes.

There is a standard persistent base class 
Persistence.Persistent, that is typically 
subclassed, directly or indirectly.  This class 
provides implementations of the special Python 
methods __getattr__ and __setattr__ that 
notify the persistence system when an object is 
accessed or modified.  This is the key mechanism by 
which the tasks described above are automated.

For standard Python class instances, the special 
method __getattr__  is called only when a 
normal attribute look-up fails.  To know when an 
object can be removed from memory, it is necessary 
to execute logic on every attribute access.  For this 
reason, the persistent base class is not an ordinary 
Python class.  It is, instead, an ExtensionClass 
[Fulton96]. Extension classes are not technically 
Python classes, but are class-like objects that provide 
features found both in Python classes and built-in 
types.  Any sub-class of an extension class is an 
extension class, so all persistent object classes are 
extension classes.

2. All sub-objects of persistent objects must be 
persistent or immutable.

This rule is necessary because, without it, the 
persistence system would not be notified of 
persistent object state changes.

Like most rules, this rule can be broken with care, as 
is done in the issue tracking system.  A persistent 
object can use mutable non-persistent sub-objects if 
it notifies the persistence system that the sub-object 
has changed. It can do this in two ways.  It can notify 
the persistence system directly by assigning a true 
value to the attribute _p_changed, as in:

  def addIssue(self, issue):
    issue.setId(i=len(self._issues)
    self._issues.append(issue)
    self._p_changed=1

or it can notify the persistence system indirectly by 
re-assigning the sub-object attribute:

  def addIssue(self, issue):
    issue.setId(len(self._issues))
    self._issues.append(issue)
    self._issues=self._issues

3. A persistent object must not implement 
__getattr__ or __setattr__.

These special methods are already implemented by 
the persistence system. Overriding them correctly, 
while possible, is extremely difficult.

4. Persistent objects must be pickle-able.

The ZODB stores objects in Python pickle format 
[van Rossum99].  All of the rules for pickling 
objects apply.  See the documentation for the Python 
pickle module for more details.

Sometimes, a persistent object may temporarily 
contain unpickleable sub-objects.  This is possible as 
long as the unpickleable objects are not included in 
the object’s pickled state.  The object’s pickled state 
is obtained during pickling by calling the object’s 
__getstate__ method with no arguments.  The 
persistent base class, 
Persistence.Persistent, provides an 
implementation of __getstate__ that returns the 
items in an object’s instance dictionary excluding 
items with keys that start with the prefix “_v_” or 
“_p_”.  The easiest way to prevent data from being
pickled is to assign it to an attribute with a name 

beginning with “_v_”1.

An object's state may be freed at any time by the 
ZODB to conserve memory usage. For this reason
an object must be prepared to recompute sub-obje
that are not included in the pickled state.  A 

1. Attributes with names beginning with “_p_” are reserved 
for use by the ZODB.



convenient place to do this is in the 
__setstate__ method, which is called when an 
object’s state is loaded from a database.  For 
example, one might have a persistent object that 
provides an interface to an external file. The 
persistent object stores the file name in it’s persistent 
state and uses a "volatile" variable to hold the open 
file:

  class pfile(Persistence.Persistent):

def __init__(self, file_name): 
self._file_name=file_name
self._v_file=open(file_name)

def __setstate__(self, state): 

  Persistence.Persistent. \
          __setstate__(
             self, state)

  self._v_file=open(
          self._file_name)

5. Instance attribute names beginning with “_p_” are 
reserved for use by the ZODB.

In addition to the rules of persistence above, the 
following advice is worth heeding by authors of any 
pickleable objects:

• Never implement the obsolete 
__getinitargs__ pickling 
method. This method introduces 
significant backward compatibility 
problems.

• Avoid implementing custom 
pickle state by overriding the 
pickling methods 
__getstate__ and 
__setstate__.  Overriding 
these methods provides greater 
control and can allow significant 
optimizations, however, 
experience has shown that using 
custom pickle state formats 
introduces brittleness to an 
application that is rarely justified 
by the optimization benefits.

2.4 Object copies and states

With regard to persistence, Python objects have one 
state, which is existence.  They enter existence when 
they are created, and leave existence when they are 
destroyed.

Objects that are made persistent with the standard pickle 
module can be in two states, in memory, and pickled, 
and can have multiple copies, any of which are in one of 

the two states.  Objects are created only once, even 
though they may be copied to and from storage many 
times.  The constructor is called only when an object is 

created initially1.

ZODB persistent objects can have additional states. 
Like ordinary pickled objects, persistent objects can 
have copies that are stored somewhere as pickles.  
Persistent objects are created only once, but may be 
copied two and from storage many times.  When in 
memory, ZODB persistent objects may be in one of 
several states. The object states and transactions are 
summarized in figure 1.  The states are described below.

1. unless the obsolete __getinitargs__ method is 
used

Figure 1. State diagram showing in-memory 
persistent object states and transitions.
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The application programmer is not responsible for 
implementing the state transitions described above, but 
it is useful to understand that and how they take place.

2.5 Error recovery

When data are to be saved permanently, an application 
commits the current transaction.  An application can 
also abort the current transaction by calling the abort 
method on the current transaction returned by the 
get_transaction function.

When a transaction is aborted, all changes made to 
persistent objects by the transaction are undone. This 
provides an extremely powerful facility for recovery 
from errors.

unsaved When an object is first created, it is 
in an unsaved state.  An unsaved 
object can transition to the up-to-
date state when it is stored in the 
database, by referencing it in an 
object that is stored in the database 
and then committing a transaction.  
When an object is first stored in the 
database, a copy is stored in the 
database and the object enters the 
up-to-date state.

An unsaved object can cease to exist 
like any other Python object.

up-to-date An object that has been saved in the 
database and that has it’s state 
loaded in memory is in the up-to-
date state.

An object in the up-to-date state 
transitions to the changed state 
when it is modified. At the time of 
the transition, the object registers 
with the transaction management 
system, so that the object’s state may 
be saved if a transaction is 
committed, or rolled back if the 
transaction is aborted.

If an up-to-date object hasn’t been 
used in a long period of time, the 
object cache manager may decide to 
deactivate the object and free the 
object’s state.  The object is still in 
memory, but it has no state.  The 
object transitions to the ghost state.

If an object is in the up-to-date state 
but is referenced only by the object 
cache, then it may be removed from 
memory.

changed When an object is changed, it enters 
the changed state.  If the current 
transaction commits, the object’s 
state is copied to the database and 
the object transitions to the up-to-
date state.

If the current transaction aborts, the 
object is deactivated and transition 
to the ghost state.

ghost An object in the ghost state exists in 
memory, but has no state loaded.  

If an attribute of the object is 
accessed, then the object’s state is 
loaded from the database and the 
object enters the up-to-date state.  It 
is also possible to set an attribute on 
an object that is in the ghost state, in 
which case it transitions directly 
from the ghost state to the changed 
state.

If an object in the ghost state is 
referenced only by the object cache, 
then it may be removed from 
memory.
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2.6 Object evolution
Lifetimes for persistent objects are typically very long.  
It is likely that the implementation of an object’s 
behavior or data structures will change over time.  

Change is accommodated by the ZODB1 in a number of 
ways.  Changes in object methods are easily 
accommodated because classes are, for the most part, 
not stored in the object database.  Changes to class 
implementation are reflected in instances the next time 
an application is executed.  

Changes in data structures require some care.  Adding 
attributes to instances is straightforward if a default 
value can be provided in a class definition.  More 
complex data structure changes must be handled in 
__setstate__ methods.  A __setstate__ 
method can check for old state structures and convert 
them to new structures when an object’s state is loaded 
from the database.

3. Architecture and features

This section presents a high-level architectural view of 
the ZODB and discusses several important features with 
their architectural impacts. A detailed UML model of 
the ZODB is provided by [Fulton99]. The architecture is 
shown in a layered representation in figure 2.

Database connections are responsible for moving data to 
and from storage.  Transactions keep track of objects 
that have changed and coordinate commit and rollback 
of object changes.

A well-defined storage interface allows different storage 
managers, with varying levels of service, to be used to 
manage low-level object storage. The plug-able storage 
interface affords a great deal of flexibility for managing 
object data.  A basic file storage is provided with 

ZODB, but other storages are available or planned, 
including relational-database-based storages, dbm-fil
based storages, and Berkely-DB-based storages.

Database, or DB, objects coordinate management of 
storages and database connections.  Applications use
DB objects to define the storage to be used, to obtain
database connections, and to perform administrative 
tasks, such as database maintenance.

3.1 Transactions and concurrency

A critical feature of the ZODB is transactions.  
Transactions can be thought of as small programs tha
have two important features:

The ZODB supports multiple threads in an application
that access the same persistent objects.  Each thread 
one or more database connections to access the 
database.  Each database connection has it's own co
of persistent objects. Application logic is expressed in
object methods. Because each thread has it’s own cop

of persistent objects, access to an object’s methods2 is 
limited to a single thread, and application logic can be
written without concern for concurrent access.

The ZODB uses an optimistic time-stamp protocol.  
Changes to individual object copies are made 
independently, so individual (copies of) objects do not
need to be locked. Changes are synchronized when 
transactions are committed.

Only one transaction is permitted to commit to a stora
at a time. If two threads modify the same object in 
multiple connections, one thread is guaranteed to 
commit first.  When the second thread commits, a 
ConflictError exception will be raised.  The 
application should catch conflict errors and re-execute

1. The characteristics of object evolution in the ZODB are 
equally applicable to any persistence mechanism based on 
Python pickles.

Figure 2. Layered view of the ZODB 
architecture
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transactions1.  When the transaction is re-executed, the 
states of the affected objects reflect changes made by the 
committed transactions.

Atomicity  greatly simplifies error handling, and is 
especially important for object-oriented applications 
because it enables information hiding. Without 
atomicity, application error recovery logic would need 
visibility to state of any objects with state that needs to 
be recovered.

The transaction manager in the ZODB implements a 
two-phase commit protocol that allows multiple 
databases to be used in the same application. This could 
include multiple ZODB databases and multiple 
relational databases.  In Zope, a transaction can effect 
data in the ZODB and data in one or more relational 
databases. For example, a transaction might update a 
Zope object and a row in an Oracle table.  If an error 
occurs, changes made to the ZODB and to the Oracle 
table will be rolled back.

3.1.1 Sub-transactions

The ZODB provides two levels of nested transactions.  
Transactions may be subdivided into sub-transactions.  
Sub-transactions can be committed and aborted without 
affecting the containing transaction.  For example, a 
transaction may abort a sub-transaction and continue 
execution.  Any changes made in the sub-transaction are 
undone before execution proceeds.  Thus sub-
transactions provide fine-grained error recovery.

Sub-transactions are commonly used to reduce memory 
consumption in transactions that modify many objects.  
Changed objects cannot be deactivated and remain in 
memory until a transaction commits. With sub-
transactions, objects can be committed and removed 
from memory without making the changes final, since 
the enclosing transaction may still be aborted.

3.1.2 Versions

Transactions can also participate in "versions".  Versions 
are similar to long-running transactions.  Changes can 
be committed to a version within the database.  Only 
users of that version see changes made in the version.  A 
version can be committed to the main database, or can 
be committed to other versions.

Versions provide a mechanism for making changes over 
a long period of time and to many objects.  Changes 
made in the version are not visible until they are 

committed and the changes made in a version can be 
easily discarded.  In Zope, this feature allows significant 
changes to be made to live web sites without effecting 
users of the sites.

Version support must be provided in the storage used. 
Version support is an optional storage service.

A locking protocol, rather than a time-stamp protocol is 
used for coordinating changes to objects in versions. 
Because versions may extend over long periods of time, 
it is unreasonable to expect an optimistic time-stamp 
protocol to be affective.

3.2 Cache management

Each ZODB connection has an object cache that holds 
references to objects loaded into memory through the 
connection.  At various times, objects in the cache are 
inspected to see if they are referenced only by the cache, 
or haven’t been accessed for a  period of time.  Objects 
that haven’t been accessed in a long time are deactivated 
so that their state is freed.  Objects referenced only by 
the cache are removed from memory. Cache parameters 
can be set to control how aggressively objects are 
inspected and to control how recently objects must be 
accessed before they are deactivated.

3.3 Undo

Transactions may be undone, or rolled back after they 
are committed if the underlying storage supports "undo" 
by storing multiple object revisions.  The file storage 
provided with ZODB is an example of a storage that 
supports undo. When an object is modified, a new 
object record is appended to the data file and old object 
revisions are retained.

Old revisions are removed when a database is packed.

3.4 Garbage collection

Circular references among persistent objects do not 
cause memory leaks.  Objects that are no longer 
accessed are deactivated.  When an object is 
deactivated, any references to sub-objects are released, 
thus breaking circular references in memory.

A pack operation is provided on the database to remove 
objects that are no longer referenced from the database 
root objects.  The pack operation also removes 
unwanted object revisions when storages that keep 
multiple revisions are used.

1. Zope re-executes transactions up to three times when 
conflict errors are raised.



4. Status

ZODB 3.0 was released as part of the Zope 2.0 release 
in September of 1999.  ZODB 3.0 added a number of 
significant features over earlier ZODB releases, most 
notably:

• Support for concurrent threads of 

execution1,

• Well-defined storage interface 
with integrated transaction 
support,

• Two-phase commit,

• Integrated versions and sub-
transactions,

A number of features are planned for future releases, 
including:

1. Support is included for multiple threads of execution 
within a process. Protocols are available to implement 
support for multiple processes.

Auditing Storages that support undo can 
provide auditing information for 
object revisions that haven’t been 
removed by packing. This 
information includes transaction 
meta data such as who performed 
an operation, what action they 
were taking, and other descriptive 
information.  Interfaces need to 
be provided for storages that keep 
auditing information independent 
of undo.

New storages New storages are expected, such 
as storages that store data in 
relational databases.

There may also be storages that 
augment existing storages, such 
as storages that store data 
compressed or that reduce storage 
when updated records are 
identical with existing records.

A utility is needed to copy data 
between storages without 
resorting to object export and 
import.

Optimization Over time, parts of the database 
will be re-implemented in C to 
provide greater performance or to 
reduce memory usage.

Locking As mentioned earlier, objects are 
not locked and conflicts are only 
detected when objects are 
written.  If object data is read and 
used to update another object, the 
other object may be updated from 
stale data.  A protocol will be 
added for verifying objects that 
are read.  Objects will not be 
locked, but object time stamps 
will be verified at commit time. If 
an object time stamp is no longer 
valid, then a ConflictError 
exception will be raised, so that 
the transaction may be 
resubmitted with up-to-date data.

Similarly, content management 
protocols, such as WebDAV 
require the ability to lock objects 
for editing.  The locks needed by 
these protocols span many 
transactions.  It is likely that this 
need will be satisfied by creating 
versions associated with locks 
and create version locks for the 
affected objects within the 
versions without actually writing 
object data.

Cross-database 
access

Currently, although an 
application can use multiple 
ZODB databases, objects in one 
database cannot access objects in 
another. The ability to support 
cross-database accesses will 
make it feasible to build object 
systems that support multiple 
storage semantics and more 
flexible storage management.

Transaction 
processing monitor 
support

The ZODB uses it’s own 
transaction manager to 
implement two-phase commit.  In 
the future, it should be possible to 
use an external transaction 
processing monitor.



, 
5. Summary

The ZODB provides an object-oriented database for 
Python that provides a high-degree of transparency.  
Applications can take advantage of object database 
features with few, if any, changes to application logic.  
With the exception of “root” objects, it isn’t necessary to 
query or update objects through database interactions.  
Objects are obtained and updated through normal object 
interactions.  A plug-able storage interface provides a 
great deal of flexibility for managing data. Transactions 
can be undone in a way that maintains transaction 

integrity.  An object cache provides high-performance
efficient memory usage, and protection from memory 
leaks due to circular references.
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Application-level 
conflict 
resolution 
protocols

The optimistic time-stamp 
protocol used by the ZODB is 
well suited to design 
environments and other 
environments where there are 
complex data structures and in 
which reads are far more 
common that writes.

Applications with much higher 
write to read ratios are likely to 
encounter frequent conflict errors 
which can seriously affect 
performance.

An approach for coping with 
conflicts is to provide conflict 
resolution at the application level. 
To see a simple example of this, 
consider a transaction that 
increments a counter.  The 
transaction reads the counter's old 
value, increments it, and writes it 
back.  Two transactions that try to 
increment the counter at the same 
time will conflict.  With some 
help from the designer of the 
counter class, we can arrange for 
increment operations to be non-
conflicting.

Query language Python provides the query 
language for the ZODB, 
however, it is desirable to provide 
industry standard query 
languages, such as the Object 
Query Language (OQL).  It 
would be desirable to have an 
OQL implementation for Python, 
that could be layered over the 
ZODB.
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