
Introduction to the Zope Object Database

Jim Fulton, Digital Creations, jim@digicool.com
Abstract

The Zope Object Database provides an object-oriented
database for Python that provides a high-degree of
transparency. Applications can take advantage of object
database features with few, if any, changes to
application logic. Usage of the database is described
and illustrated with an example. Features such as a
plug-able storage interface, rich transaction support,
undo, and a powerful object cache are described.

1. Introduction

Many applications need to store data for use over
multiple application executions, or to use more data than
can practically be stored in memory. A number of
approaches can be used to manage large amounts of
persistent data. Perhaps the most common approach is to
use relational database systems. Relational database
systems provide a simple model for organizing data into
tables, and most can handle large amounts of data
effectively. Because of their simple data model,
relational databases are easy to understand, at least for
small problems. Unfortunately, relational databases can
become quite cumbersome when the problem domain
does not fit a simple tabular organization.

An advantage of relational database systems is their
programming-language neutrality. Data are stored in
tables, which are language independent. An application
must read data from tables into program variables
before use and must write modified data back to tables
when necessary. This puts a significant burden on the
application developer. A significant amount of
application logic is devoted to translation of data to and
from the relational model.

An alternative is to retain the tabular structure in the
program. For example, rather than populating objects
from tables, simply create and use table objects within
the application. In this case, high-level tools can be
used to load tables from the relational database. With
sufficient knowledge of database keys, tools could
automate saving data when tables are changed. A
disadvantage of this approach is that it forces the
application to be written to the relational model, rather
than in an object-oriented fashion. The benefits of
object orientation, such as encapsulation and association
of logic with data are lost.

Object databases provide a tighter integration between
an applications object model and data storage. Data are
not stored in tables, but in ways that reflect the
organization of the information in the problem domain.
Application developers are freed from writing logic for

moving data to and from storage1.

The purpose of this paper is to present an object
database for Python, the Zope Object Database
(ZODB). The goals of the paper are to describe the use
and benefits of the ZODB, provide a high-level
architectural view, to highlight interesting technical
issues, and to describe recent and future developments.

2. Application development

This part of the paper provides an introduction to
application development with the ZODB.

2.1 Example: an issue tracking system

This section will present a simple issue tracking system
as a means for showing how the Zope object database
can be used.

Consider an application that manages a collection of
issues. The data for this application might be
implemented in an ’Issue’ module, as shown in
Example 1:

There is an Issues class that manages a collection of
issues and a text index to support full-text search for
issues. An issue may have comments, which may have
comments, and so on, recursively. The text for an issue
and it’s comments is indexed so that issues can be
searched for based on issue and comment text.

1. Many object databases, fall short on this last point,
as developers must write serialization logic,
although this logic is at least encapsulated.

An application for managing issues will typically be
some sort of server or long-running application, like a
web application or an interactive graphical application.
For brevity, the application will be presented here as a
collection of scripts that operate on issues data.

A script for adding issues might be along the lines of
that shown in Example 2

An obvious problem with this script is that it recreates
the issue database each time. Obviously, some logic
needs to be added to make data persistent between script
invocations. The data could be stored in a relational
database, but it would be cumbersome to map the
hierarchical issue data to a relational model, let alone
the text index, which is a "black box" from the point of
view of the issue application.

A simple way to add persistence is to save the data in a
file in Python pickle format (Example3)

The data are stored in the file, issues.pickle.
When we start the application, the data are read by
opening the file, creating an unpickler on it, and calling
the load method on the unpickler to load the data.
After adding the issue, the data must be written to the
file by opening the file for writing, creating a pickler on
it, and calling the pickler’s dump method to save the
data.

Before calling the add script, the data file must be
created with an initialization script (Example 4).

This approach is very simple, but does not scale very
well. The entire database is read or written every time
an issue is read or saved. A better approach is to use the
ZODB. To do this, there are a few changes that need to

from TextIndex import TextIndex

class Issues:

 def __init__(self):
 self._index=TextIndex()
 self._issues=[]

 def addIssue(self, issue):
 issue.setId(len(self._issues))
 self._issues.append(issue)

 def __getitem__(self, i):
 return self._issues[i]

 def search(self, text):
 return map(
 self.__getitem__,
 self._index.search(text))

class Comment:
 _text=’’

 def __init__(self, text, parent):
 self._parent=parent
 self.edit(text)
 self._comments=[]

 def text(self):
 return self.text

 def edit(self, text):
 self._unindex(self._text)
 self._text=text
 self._index(self._text)

 def _index(self, text):
 self._parent._index(text)

 def _unindex(self, text):
 self._parent._unindex(text)

 def __getitem__(self, i):
 return self._comments[i]

 def comment(self, text):
 self._comments.append(
 Comment(text, self))

class Issue(Comment):
 _id=None

 def __init__(self, title, text,
 parent):
 Comment.__init__(self, text,
 parent)
 self._title = title

 def setId(self, id):
 self._id=id
 self._index(self._text)

 def title(self): return self._title

 def _index(self, text):
 if self._id is not None:
 self._parent._index(
 text, self._id)

 def _unindex(self, text):
 if self._id is not None:
 self._parent._index(
 text, self._id)

Example 1. A simple Issue module.

import Issue, sys

issues=Issue.Issues()

issue=Issue.Issue(
 sys.argv[1], sys.argv[2],
 issues)
issues.addIssue(issue)

Example 2. A script for adding an issue

import Issue, sys, pickle, os

issues=pickle.Unpickler(
 open(‘issues.pickle’)).load()

issue=Issue.Issue(
 sys.argv[1], sys.argv[2],
 issues)
issues.addIssue(issue)

pickle.Pickler(
 open(‘issues.pickle’,’w’)
).dump(issues)

Example 3. A script for adding an issue and saving the
issue data in pickler format

be made to the application. First, the application classes
must be changed to mix-in a special persistence class
(Example 5)

Changing the application classes is straightforward. The
first change needed is to add the
Persistence.Persistent base class.

We need to add a line to the addIssue and comment
methods to notify the persistence system that objects
have changed:

self._p_changed=1

This change is necessary because we have modified a
list sub-object that doesn’t participate in persistence.
The normal automatic detection of object changed
doesn’t work in this case. See “The rules of persistence”
later in this paper for further discussion of this change.

The text index is a bit more problematic. We need a
modified version of the text index that mixes in the
persistent base class as well. This is shown by using a
different version of the text index. Modifying the text
index is problematic because the text-index is outside
the application and it would be preferable if the text
index did not have to be changed.

Finally, the application scripts must be modified. The
new add script is shown in example 6.

This add script is similar to the previous one except for a
few details. First, note the order of the imports. In
particular, the application module, Issue, is loaded
after ZODB. In this case, the import order is important.
The Issue module imports the Persistence
module. This module is initially empty. When ZODB is
imported, it populates the Persistence module with

import Issue, pickle

pickle.Pickler(
 open(‘issues.pickle’,’w’)
).dump(Issue.Issues())

Example 4. A script for initializing a pickle file with an
empty issues collection.

import sys, ZODB, ZODB.FileStorage
import Issue

db=ZODB.DB(
 ZODB.FileStorage.FileStorage(
 ‘issues.fs’))
issues=db.open().root()[‘issues’]

issue=Issue.Issue(
 sys.argv[1], sys.argv[2],
 issues)
issues.addIssue(issue)

get_transaction().commit()

Example 6. A script for adding an issue by updating an
issues collection on a ZODB.

import PTextIndex, Persistence

class Issues(Persistence.Persistent):

 def __init__(self):
 self._index=TextIndex()
 self._issues=[]

 def addIssue(self, issue):
 issue.setId(len(self._issues))
 self._issues.append(issue)
 self._p_changed=1

 def __getitem__(self, i):
 return self._issues[i]

 def search(self, text):
 return map(
 self.__getitem__,
 self._index.search(text))

class Comment(Persistence.Persistent):
 _text=’’

 def __init__(self, text, parent):
 self._parent=parent
 self.edit(text)

 def text(self): return self.text

 def edit(self, text):
 self._unindex(self._text)
 self._text=text
 self._index(self._text)

 def _index(self, text):
 self._parent._index(text)

 def _unindex(self, text):
 self._parent._unindex(text)

 def __getitem__(self, i):
 return self._comments[i]

 def comment(self, text):
 self._comments.append(
 Comment(text, self))
 self._p_changed=1

class Issue(Comment):
 _id=None

 def __init__(self, title, text, parent):
 Comment.__init__(self,
 text, parent)
 self._title = title

 def setId(self, id):
 self._id=id
 self._index(self._text)

 def title(self): return self._title

 def _index(self, text):
 if self._id is not None:
 self._parent._index(
 text, self._id)

 def _unindex(self, text):
 if self._id is not None:
 self._parent._index(
 text, self._id)

Example 5. A simple issue module modified to use the
ZODB

classes, like Persistent, that depend on ZODB.
This sequence of imports may seem odd, but it allows
ZODB to be renamed without affecting much
application code. This was very useful when switching
from the older version of the object database,
BoboPOS, to ZODB.

Rather than loading all of the data from a pickle file, we
open the object database, open a connection to the
database, and get the root object, named "issues" from
the database. The Zope object database allows a
number of different kinds of low-level storage managers
to be used. We must first create a storage object, and
then create a database object using the storage object. In
this example, we used a "file" storage, which is a ZODB
storage that stores data in a single file. Other storages
are or soon will be available, such as dbm file storages
and storages that use relational databases.

It’s important to note in this example, that we’re only
loading a small part of the database into memory.
Essentially, only the issue container and issue place-
holders are loaded into memory. Issue state and issue
comments are not loaded.

Rather than dumping the entire database as a single
pickle, we simply commit a transaction. This is an
important feature of the ZODB. The application
programmer does not have to be aware of the objects
that were changed in a computation. The application
programmer simply needs to define when work should
be saved. This is especially important in object-oriented
applications. For an application programmer to control
what objects need to be saved would require knowledge
of object internals. For example, a user of issues would
need to know that a Issues objects contain indexes
that needed to be saved when an issue was added or
modified.

ZODB installs a function, get_transaction
function in the Python __builtins__ module. This
is done so that transaction-aware tools can use a
transaction manager without depending on specific
database implementations. To commit the current
transaction, call get_transaction to get the current
transaction, and then call the transaction’s commit
method to commit the transaction, as shown in
example 6.

As when storing data in a pickle file, we need a script
that initializes the database (example 7).

In a long running application, such as a web application
or a graphical application, database open and creation
are typically performed during application start-up, so
this code is not required in every part of the application
that modifies data. Further, transaction boundaries are

usually defined outside of the ordinary application code.
In a web application, a transaction might be committed
at the end of a web request, as is done in Zope. In a
graphical application, there might be menu options for
"saving work" that commits a transaction. Typically,
application code doesn’t need to define transaction
boundaries.

Usually, business logic doesn’t contain any database
related code, with the exception of mixing in the
Persistent base class in class statements. There are
some cases when the application developer does have to
be aware of persistence issues. These cases will be
discussed in later sections of the paper.

2.2 Database organization

The ZODB database spreads object storage over
multiple records. Each stored persistent object has it’s
own database record. When an object is modified and
saved to the database, only the object’s record is
affected. Records for unchanged persistent sub-objects
are unaffected. Each object has a persistent object id
that uniquely identifies the object within the database
and is used to lookup object data in the database.

The database has a designated "root" object, which
provides access to application root objects by name. An
application typically provides a single root object as in
the example given earlier in this paper. All other objects
are accessed through object traversal from the root,
where object traversal might be performed by attribute
access, item access, or method call.

There is no application level organization imposed by
the ZODB. There is no database-imposed notion of
tables or indexes. Applications are free to impose any
organization on the object database. One could
implement a relational database on top of the ZODB.
Indexes are readily implemented on top of ZODB. Zope
includes a number of high- and low-level indexing
facilities built on the ZODB.

import ZODB, ZODB.FileStorage
import Issue

db=ZODB.DB(
 ZODB.FileStorage.FileStorage(
 ‘issues.fs’, create=1))

root=db.open().root()
root[‘issues’]=Issue.Issues()

get_transaction().commit()

Example 7. A script for initializing a ZODB with an
issues collection.

,
cts
2.3 The rules of persistence

Most applications require few changes to use the
ZODB. There are, however, a few rules that must be
followed. This section details what these rules are and
the reasons behind them.

A major goal of the ZODB is to make persistence as
automatic as possible. Infrastructure exists to automate
two critical tasks:

1. Notifying the persistence system when an object has
changed

The persistence system keeps track of changes to
objects so that only changed objects are saved when
a transaction is committed and so that old state can
be restored when a transaction is aborted.

2. Notifying the persistence system when an object has
been accessed

When dealing with large databases, the persistence
system moves objects into memory when they are
needed and out of memory when they are no longer
being used. To know when an object is no longer
used, it is necessary to track whether an object is
being accessed.

To allow the infrastructure to automate these tasks, the
following rules must be followed:

1. Persistent object classes must subclass persistent
object classes.

There is a standard persistent base class
Persistence.Persistent, that is typically
subclassed, directly or indirectly. This class
provides implementations of the special Python
methods __getattr__ and __setattr__ that
notify the persistence system when an object is
accessed or modified. This is the key mechanism by
which the tasks described above are automated.

For standard Python class instances, the special
method __getattr__ is called only when a
normal attribute look-up fails. To know when an
object can be removed from memory, it is necessary
to execute logic on every attribute access. For this
reason, the persistent base class is not an ordinary
Python class. It is, instead, an ExtensionClass
[Fulton96]. Extension classes are not technically
Python classes, but are class-like objects that provide
features found both in Python classes and built-in
types. Any sub-class of an extension class is an
extension class, so all persistent object classes are
extension classes.

2. All sub-objects of persistent objects must be
persistent or immutable.

This rule is necessary because, without it, the
persistence system would not be notified of
persistent object state changes.

Like most rules, this rule can be broken with care, as
is done in the issue tracking system. A persistent
object can use mutable non-persistent sub-objects if
it notifies the persistence system that the sub-object
has changed. It can do this in two ways. It can notify
the persistence system directly by assigning a true
value to the attribute _p_changed, as in:

 def addIssue(self, issue):
 issue.setId(i=len(self._issues)
 self._issues.append(issue)
 self._p_changed=1

or it can notify the persistence system indirectly by
re-assigning the sub-object attribute:

 def addIssue(self, issue):
 issue.setId(len(self._issues))
 self._issues.append(issue)
 self._issues=self._issues

3. A persistent object must not implement
__getattr__ or __setattr__.

These special methods are already implemented by
the persistence system. Overriding them correctly,
while possible, is extremely difficult.

4. Persistent objects must be pickle-able.

The ZODB stores objects in Python pickle format
[van Rossum99]. All of the rules for pickling
objects apply. See the documentation for the Python
pickle module for more details.

Sometimes, a persistent object may temporarily
contain unpickleable sub-objects. This is possible as
long as the unpickleable objects are not included in
the object’s pickled state. The object’s pickled state
is obtained during pickling by calling the object’s
__getstate__ method with no arguments. The
persistent base class,
Persistence.Persistent, provides an
implementation of __getstate__ that returns the
items in an object’s instance dictionary excluding
items with keys that start with the prefix “_v_” or
“_p_”. The easiest way to prevent data from being
pickled is to assign it to an attribute with a name

beginning with “_v_”1.

An object's state may be freed at any time by the
ZODB to conserve memory usage. For this reason
an object must be prepared to recompute sub-obje
that are not included in the pickled state. A

1. Attributes with names beginning with “_p_” are reserved
for use by the ZODB.

convenient place to do this is in the
__setstate__ method, which is called when an
object’s state is loaded from a database. For
example, one might have a persistent object that
provides an interface to an external file. The
persistent object stores the file name in it’s persistent
state and uses a "volatile" variable to hold the open
file:

 class pfile(Persistence.Persistent):

def __init__(self, file_name):
self._file_name=file_name
self._v_file=open(file_name)

def __setstate__(self, state):

 Persistence.Persistent. \
 __setstate__(
 self, state)

 self._v_file=open(
 self._file_name)

5. Instance attribute names beginning with “_p_” are
reserved for use by the ZODB.

In addition to the rules of persistence above, the
following advice is worth heeding by authors of any
pickleable objects:

• Never implement the obsolete
__getinitargs__ pickling
method. This method introduces
significant backward compatibility
problems.

• Avoid implementing custom
pickle state by overriding the
pickling methods
__getstate__ and
__setstate__. Overriding
these methods provides greater
control and can allow significant
optimizations, however,
experience has shown that using
custom pickle state formats
introduces brittleness to an
application that is rarely justified
by the optimization benefits.

2.4 Object copies and states

With regard to persistence, Python objects have one
state, which is existence. They enter existence when
they are created, and leave existence when they are
destroyed.

Objects that are made persistent with the standard pickle
module can be in two states, in memory, and pickled,
and can have multiple copies, any of which are in one of

the two states. Objects are created only once, even
though they may be copied to and from storage many
times. The constructor is called only when an object is

created initially1.

ZODB persistent objects can have additional states.
Like ordinary pickled objects, persistent objects can
have copies that are stored somewhere as pickles.
Persistent objects are created only once, but may be
copied two and from storage many times. When in
memory, ZODB persistent objects may be in one of
several states. The object states and transactions are
summarized in figure 1. The states are described below.

1. unless the obsolete __getinitargs__ method is
used

Figure 1. State diagram showing in-memory
persistent object states and transitions.

unsaved

up-to-date

changed

ghost

created

added to DB

object

changed

changes

committed

loaded

from DB

changes
aborted

state

loaded
deactivated

no longer
referenced

object
changed

The application programmer is not responsible for
implementing the state transitions described above, but
it is useful to understand that and how they take place.

2.5 Error recovery

When data are to be saved permanently, an application
commits the current transaction. An application can
also abort the current transaction by calling the abort
method on the current transaction returned by the
get_transaction function.

When a transaction is aborted, all changes made to
persistent objects by the transaction are undone. This
provides an extremely powerful facility for recovery
from errors.

unsaved When an object is first created, it is
in an unsaved state. An unsaved
object can transition to the up-to-
date state when it is stored in the
database, by referencing it in an
object that is stored in the database
and then committing a transaction.
When an object is first stored in the
database, a copy is stored in the
database and the object enters the
up-to-date state.

An unsaved object can cease to exist
like any other Python object.

up-to-date An object that has been saved in the
database and that has it’s state
loaded in memory is in the up-to-
date state.

An object in the up-to-date state
transitions to the changed state
when it is modified. At the time of
the transition, the object registers
with the transaction management
system, so that the object’s state may
be saved if a transaction is
committed, or rolled back if the
transaction is aborted.

If an up-to-date object hasn’t been
used in a long period of time, the
object cache manager may decide to
deactivate the object and free the
object’s state. The object is still in
memory, but it has no state. The
object transitions to the ghost state.

If an object is in the up-to-date state
but is referenced only by the object
cache, then it may be removed from
memory.

changed When an object is changed, it enters
the changed state. If the current
transaction commits, the object’s
state is copied to the database and
the object transitions to the up-to-
date state.

If the current transaction aborts, the
object is deactivated and transition
to the ghost state.

ghost An object in the ghost state exists in
memory, but has no state loaded.

If an attribute of the object is
accessed, then the object’s state is
loaded from the database and the
object enters the up-to-date state. It
is also possible to set an attribute on
an object that is in the ghost state, in
which case it transitions directly
from the ghost state to the changed
state.

If an object in the ghost state is
referenced only by the object cache,
then it may be removed from
memory.

e-

t

uses

pies

ies

ge

2.6 Object evolution
Lifetimes for persistent objects are typically very long.
It is likely that the implementation of an object’s
behavior or data structures will change over time.

Change is accommodated by the ZODB1 in a number of
ways. Changes in object methods are easily
accommodated because classes are, for the most part,
not stored in the object database. Changes to class
implementation are reflected in instances the next time
an application is executed.

Changes in data structures require some care. Adding
attributes to instances is straightforward if a default
value can be provided in a class definition. More
complex data structure changes must be handled in
__setstate__ methods. A __setstate__
method can check for old state structures and convert
them to new structures when an object’s state is loaded
from the database.

3. Architecture and features

This section presents a high-level architectural view of
the ZODB and discusses several important features with
their architectural impacts. A detailed UML model of
the ZODB is provided by [Fulton99]. The architecture is
shown in a layered representation in figure 2.

Database connections are responsible for moving data to
and from storage. Transactions keep track of objects
that have changed and coordinate commit and rollback
of object changes.

A well-defined storage interface allows different storage
managers, with varying levels of service, to be used to
manage low-level object storage. The plug-able storage
interface affords a great deal of flexibility for managing
object data. A basic file storage is provided with

ZODB, but other storages are available or planned,
including relational-database-based storages, dbm-fil
based storages, and Berkely-DB-based storages.

Database, or DB, objects coordinate management of
storages and database connections. Applications use
DB objects to define the storage to be used, to obtain
database connections, and to perform administrative
tasks, such as database maintenance.

3.1 Transactions and concurrency

A critical feature of the ZODB is transactions.
Transactions can be thought of as small programs tha
have two important features:

The ZODB supports multiple threads in an application
that access the same persistent objects. Each thread
one or more database connections to access the
database. Each database connection has it's own co
of persistent objects. Application logic is expressed in
object methods. Because each thread has it’s own cop

of persistent objects, access to an object’s methods2 is
limited to a single thread, and application logic can be
written without concern for concurrent access.

The ZODB uses an optimistic time-stamp protocol.
Changes to individual object copies are made
independently, so individual (copies of) objects do not
need to be locked. Changes are synchronized when
transactions are committed.

Only one transaction is permitted to commit to a stora
at a time. If two threads modify the same object in
multiple connections, one thread is guaranteed to
commit first. When the second thread commits, a
ConflictError exception will be raised. The
application should catch conflict errors and re-execute

1. The characteristics of object evolution in the ZODB are
equally applicable to any persistence mechanism based on
Python pickles.

Figure 2. Layered view of the ZODB
architecture

Storage Interface

DB Connection

Transaction

Application

Concurrency
control

Transactions execute as though
they have exclusive access to
data. Multiple transactions can
run concurrently and application
logic does not have to take
concurrent access into account

Atomicity With respect to persistent object
changes, transactions either
succeed or fail. In particular, no
partial changes to persistent data
are retained unless a transaction
commits.

2. Or, more precisely, to an object copy’s methods.

transactions1. When the transaction is re-executed, the
states of the affected objects reflect changes made by the
committed transactions.

Atomicity greatly simplifies error handling, and is
especially important for object-oriented applications
because it enables information hiding. Without
atomicity, application error recovery logic would need
visibility to state of any objects with state that needs to
be recovered.

The transaction manager in the ZODB implements a
two-phase commit protocol that allows multiple
databases to be used in the same application. This could
include multiple ZODB databases and multiple
relational databases. In Zope, a transaction can effect
data in the ZODB and data in one or more relational
databases. For example, a transaction might update a
Zope object and a row in an Oracle table. If an error
occurs, changes made to the ZODB and to the Oracle
table will be rolled back.

3.1.1 Sub-transactions

The ZODB provides two levels of nested transactions.
Transactions may be subdivided into sub-transactions.
Sub-transactions can be committed and aborted without
affecting the containing transaction. For example, a
transaction may abort a sub-transaction and continue
execution. Any changes made in the sub-transaction are
undone before execution proceeds. Thus sub-
transactions provide fine-grained error recovery.

Sub-transactions are commonly used to reduce memory
consumption in transactions that modify many objects.
Changed objects cannot be deactivated and remain in
memory until a transaction commits. With sub-
transactions, objects can be committed and removed
from memory without making the changes final, since
the enclosing transaction may still be aborted.

3.1.2 Versions

Transactions can also participate in "versions". Versions
are similar to long-running transactions. Changes can
be committed to a version within the database. Only
users of that version see changes made in the version. A
version can be committed to the main database, or can
be committed to other versions.

Versions provide a mechanism for making changes over
a long period of time and to many objects. Changes
made in the version are not visible until they are

committed and the changes made in a version can be
easily discarded. In Zope, this feature allows significant
changes to be made to live web sites without effecting
users of the sites.

Version support must be provided in the storage used.
Version support is an optional storage service.

A locking protocol, rather than a time-stamp protocol is
used for coordinating changes to objects in versions.
Because versions may extend over long periods of time,
it is unreasonable to expect an optimistic time-stamp
protocol to be affective.

3.2 Cache management

Each ZODB connection has an object cache that holds
references to objects loaded into memory through the
connection. At various times, objects in the cache are
inspected to see if they are referenced only by the cache,
or haven’t been accessed for a period of time. Objects
that haven’t been accessed in a long time are deactivated
so that their state is freed. Objects referenced only by
the cache are removed from memory. Cache parameters
can be set to control how aggressively objects are
inspected and to control how recently objects must be
accessed before they are deactivated.

3.3 Undo

Transactions may be undone, or rolled back after they
are committed if the underlying storage supports "undo"
by storing multiple object revisions. The file storage
provided with ZODB is an example of a storage that
supports undo. When an object is modified, a new
object record is appended to the data file and old object
revisions are retained.

Old revisions are removed when a database is packed.

3.4 Garbage collection

Circular references among persistent objects do not
cause memory leaks. Objects that are no longer
accessed are deactivated. When an object is
deactivated, any references to sub-objects are released,
thus breaking circular references in memory.

A pack operation is provided on the database to remove
objects that are no longer referenced from the database
root objects. The pack operation also removes
unwanted object revisions when storages that keep
multiple revisions are used.

1. Zope re-executes transactions up to three times when
conflict errors are raised.

4. Status

ZODB 3.0 was released as part of the Zope 2.0 release
in September of 1999. ZODB 3.0 added a number of
significant features over earlier ZODB releases, most
notably:

• Support for concurrent threads of

execution1,

• Well-defined storage interface
with integrated transaction
support,

• Two-phase commit,

• Integrated versions and sub-
transactions,

A number of features are planned for future releases,
including:

1. Support is included for multiple threads of execution
within a process. Protocols are available to implement
support for multiple processes.

Auditing Storages that support undo can
provide auditing information for
object revisions that haven’t been
removed by packing. This
information includes transaction
meta data such as who performed
an operation, what action they
were taking, and other descriptive
information. Interfaces need to
be provided for storages that keep
auditing information independent
of undo.

New storages New storages are expected, such
as storages that store data in
relational databases.

There may also be storages that
augment existing storages, such
as storages that store data
compressed or that reduce storage
when updated records are
identical with existing records.

A utility is needed to copy data
between storages without
resorting to object export and
import.

Optimization Over time, parts of the database
will be re-implemented in C to
provide greater performance or to
reduce memory usage.

Locking As mentioned earlier, objects are
not locked and conflicts are only
detected when objects are
written. If object data is read and
used to update another object, the
other object may be updated from
stale data. A protocol will be
added for verifying objects that
are read. Objects will not be
locked, but object time stamps
will be verified at commit time. If
an object time stamp is no longer
valid, then a ConflictError
exception will be raised, so that
the transaction may be
resubmitted with up-to-date data.

Similarly, content management
protocols, such as WebDAV
require the ability to lock objects
for editing. The locks needed by
these protocols span many
transactions. It is likely that this
need will be satisfied by creating
versions associated with locks
and create version locks for the
affected objects within the
versions without actually writing
object data.

Cross-database
access

Currently, although an
application can use multiple
ZODB databases, objects in one
database cannot access objects in
another. The ability to support
cross-database accesses will
make it feasible to build object
systems that support multiple
storage semantics and more
flexible storage management.

Transaction
processing monitor
support

The ZODB uses it’s own
transaction manager to
implement two-phase commit. In
the future, it should be possible to
use an external transaction
processing monitor.

,
5. Summary

The ZODB provides an object-oriented database for
Python that provides a high-degree of transparency.
Applications can take advantage of object database
features with few, if any, changes to application logic.
With the exception of “root” objects, it isn’t necessary to
query or update objects through database interactions.
Objects are obtained and updated through normal object
interactions. A plug-able storage interface provides a
great deal of flexibility for managing data. Transactions
can be undone in a way that maintains transaction

integrity. An object cache provides high-performance
efficient memory usage, and protection from memory
leaks due to circular references.

6. References

Fulton96, Fulton, James L., 1996, Extension Classes, Python
Extension Types Become Classes,
http://www.digicool.com/releases/ExtensionClass.

Fulton99, Fulton, James L., 1999, Zope Object Database
Version 3 UML model,
http://www.zope.org/Documentation/Models/ZODB.

van Rossum99, vanRossum, Guido, 1999, Python Library
Reference, Corporation for National Research Initiatives
(CNRI), 1895 Preston White Drive, Reston, Va 20191, USA.

Application-level
conflict
resolution
protocols

The optimistic time-stamp
protocol used by the ZODB is
well suited to design
environments and other
environments where there are
complex data structures and in
which reads are far more
common that writes.

Applications with much higher
write to read ratios are likely to
encounter frequent conflict errors
which can seriously affect
performance.

An approach for coping with
conflicts is to provide conflict
resolution at the application level.
To see a simple example of this,
consider a transaction that
increments a counter. The
transaction reads the counter's old
value, increments it, and writes it
back. Two transactions that try to
increment the counter at the same
time will conflict. With some
help from the designer of the
counter class, we can arrange for
increment operations to be non-
conflicting.

Query language Python provides the query
language for the ZODB,
however, it is desirable to provide
industry standard query
languages, such as the Object
Query Language (OQL). It
would be desirable to have an
OQL implementation for Python,
that could be layered over the
ZODB.

	1. Introduction
	2. Application development
	2.1 Example: an issue tracking system
	2.2 Database organization
	2.3 The rules of persistence
	2.4 Object copies and states
	2.5 Error recovery
	2.6 Object evolution

	3. Architecture and features
	3.1 Transactions and concurrency
	3.1.1 Sub-transactions
	3.1.2 Versions

	3.2 Cache management
	3.3 Undo
	3.4 Garbage collection

	4. Status
	5. Summary
	6. References

