
od-
her
he
ud-
the
or
nts
d
ch
d to

ere,
od-

ow
us

r-
 by
ll
ved
g
a-
s.
's
ber
ar-
r-

d-
el
ac-
for
his
ib-

Climate Data Analysis Software

Paul F. Dubois

Program for Climate Model Diagnosis and Intercomparison

Lawrence Livermore National Laboratory1
Abstract

Python is used as the basis for the construction of tools
used by the climate modeling community. This paper
briefly describes the Python-based software developed
by the Program for Climate Modeling Diagnosis and
Intercomparison at Lawrence Livermore National Labo-
ratory, and briefly describes Pyfort, a tool used for mak-
ing Python extensions with Fortran.

We also discuss our plans for expanding our software to
become an “Earth Systems Grid”, that is, a distributed
environment for climate data analysis over the Next
Generation Internet.

1.0 Introduction to climate modeling

Before we discuss the way in which we use Python to
create software for the climate modeling community, we
will briefly explain the nature of the work done by the
climate modeling community.

1.1 Climate modeling and weather prediction

The weather is what you get; the climate is what you
expect. While long-term weather prediction and short-
term climate modeling are growing closer together these
days, the basic distinction is that climate modelers try to
predict the long-term average behavior of the climate
and to understand the variability to be expected around
that average.

One of the current issues for climate modeling is the
well-known issue of “global warming”; that is, is there
going to be an increase in the average temperature of the
Earth over the next few hundred years caused by the
increased amount of carbon dioxide and other so-called
greenhouse gases in our atmosphere, and if so, how
much will this increase be? Can we detect evidence for
such an increase over the last few tens of years? While
these are interesting and controversial topics, they are
but one aspect of an effort to understand and model the
geophysical environment.

The main tools of science in this area are observational
data, experiments in understanding the basic atmo-

spheric and geologic processes, and computational m
els which use the basic equations of physics toget
with geophysical data to simulate the behavior of t
Earth over time. The output of such models can be st
ied to see what it predicts and validated by exploring
data to see how much verisimilitude it exhibits. F
example, if a steady-state model predicts El Nino eve
at approximately the historically observed rate an
intensities, this would be to its credit. Other criteria su
as average cloudiness, rainfall, etc. can also be use
judge models

There are models that concentrate on the atmosph
others that model the ocean, and so-called coupled m
els that model both together. Vegetation, ice and sn
cover, and other factors are also considered by vario
models

1.2 The role of PCMDI

The Program for Climate Model Diagnosis and Inte
comparison serves as a distributor for data produced
over thirty climate-modeling groups world wide, as we
as for some observational data and other data deri
from observations. PCMDI has been developin
improved methods and tools for the diagnosis, valid
tion and intercomparison of global climate model
PCMDI is a participant in the Department of Energy
Climate Change Prediction Program and has a num
of projects such as the Atmospheric Model Intercomp
ison Project which collect model data and help unde
stand that data.

2.0 PCMDI’s Software Suite

PCMDI’s software is a Python-based collection of mo
ules for the analysis and visualization of climate mod
and observational data, GUI interfaces for user inter
tion, mathematical procedures for analysis, and tools
the exploration and standardization of data sets. To t
we are adding components that will enable the distr
uted computing vision just discussed.

ns
rs to
vi-
sis,
y
g
r-
n-
2.1 Architecture

Python is the key to our success. We have constructed
our software as a collection of Python modules. Our
users can use this software in many different ways:
GUI-based tools for browsing and creating graphs,
batch scripts for processing data sets, mathematical
modules for computing derived quantities, etc. Python
ties all these tools together and allows arbitrary combi-
nations to be developed on the fly. For example, the user
can invoke Python scripts which do intensive calcula-
tions or which use routines written in Fortran to help
calculate quantities of interest to be plotted using the
same tool used for making routine plots from models
and observations.

Python has many attributes and facilities that combine
to make this possible.

• The syntax is simple and easy to learn. This is
crucial because the end users are not computer
scientists. Their main experience is with For-
tran, which shares with Python a generally sim-
ilar expression syntax and array syntax, and the
quality of being a language which can be
learned completely in a short time.

• Python scales well with good namespace facili-
ties that enable us to combine the use of many
modules without problems arising.

• Python’s object-oriented nature allows us to
express naturally the concepts with which the
scientist is dealing and to structure the software
in a way that allows both expansion and modi-
fication without difficulty. Bertrand Meyer
([2]) calls this the “open-closed principle”: the
software has the property that it is open to fur-
ther development but closed in the sense that
current applications can count on a stable facil-
ity.

• Python’s Numerical extension is important
because it allows operation on very large,
multi-dimensional arrays to be performed at
near-compiled speed in Python. This greatly
reduces the number of compiled extensions
that are necessary and allows algorithm devel-
opment and data exploration to be done mostly
in the interpreter.

• Python’s extensive international community and
user-contributed library is a constant source of
components that we can use. In return,
Lawrence Livermore National Laboratory is
supporting the Python Open Source effort by
its membership in the Python Consortium and

by releasing our own Python extensions and
tools for use by others.

Key components of our software include:

• An object-oriented database facility that presents
a uniform interface to the user to a wide variety
of data formats used by climate scientists.
Datasets can be described and manipulated log-
ically as distinct from their physical representa-
tion. For example, the data for cloudiness in a
particular model might be spread over a num-
ber of files representing different years, but the
user need not be aware of that fact.

• Tools for mathematical processing of data. We
have to have such tools that can correctly deal
with missing values such as is common in
observations or which may be desired in calcu-
lating effects while omitting adjacent data
from, say, land areas. At first we did this by
modifying the source for Numerical, but we are
now able to do such calculations using a mod-
ule written on top of the standard facility.

Some of the things we do mathematically
include statistical analysis, detection of anoma-
lous data, regridding to new grids, and alter-
ation of submitted data to match standards as to
units, etc. Some of these calculations are com-
putationally intensive and the performance of
Python’s numerical facilities and our ability to
extend Python with Fortran is important.

• Visualization software, including a complex
GUI interface called VCS.

• Tools to select datasets for examination by que-
rying the metadata looking for datasets with the
desired criteria.

• Tools to enable extension of Python. These are
described further in the next section.

• Finally, we write tools that enable us to carry out
our role as organizers, validators, and distribu-
tors of these large data sets.

2.2 The Next Generation Internet Project

The advent of significant broadband communicatio
between climate research sites will enable researche
more easily work together and enable distributed acti
ties to examine datasets, select quantities for analy
and perform calculations, with the ability to collectivel
view results and discuss them. PCMDI is participatin
as co-principal investigators in a Next Generation Inte
net project in which we begin to make such an enviro

of
g
is
e
s.
ch
r
m-
i-

and
b-

m-
I
urn

f
for

, is
n-

nta-
://

 is
ment available. While playing a leading role in this
distributed computing environment, PCMDI is in coop-
erative activity with ANL, ORNL, LBNL, PNNL,
LANL and NCAR. Making our software platform inde-
pendent and based on current technology, PCMDI soft-
ware is helping climate research scientist advance in
scientific knowledge based on the physical ability of
computers, databases, networks and associated compu-
tational software infrastructures.

Our recent demonstration of prototype software for the
NGI project is an interesting case study of how Python
enables rapid development.

We wanted to demonstrate using data located at differ-
ent institutions to make a visualization. We wrote a data
browser that allowed the user to select data either
locally or via catalogs at different institutions, the cata-
logs being handled as an LDAP server. The user would
choose data representing cloud fractions, surface tem-
perature, terrain height at a certain time. The software
would extract and transport the smallest necessary sub-
set of the files required and then produce a three-dimen-
sional visualization of the clouds and the terrain, with
the terrain colored by temperature.

We had less than four months from the beginning of the
project until the demo, and considerable time was spent
understanding the technology available from our part-
ners and elsewhere. In the end we utilized many differ-
ent pieces of the Python software world:

• wxPython, a wrapper for wxWindows, a plat-
form-independent open-source C++ library for
GUI construction, was used to construct the
GUI interface. It took only one man-month to
go from completely ignorance of this package
to successful deployment of a GUI with menus,
notebook pages, pop-up dialogs, spin-counters,
progress meters, etc.

• Necessary parts of ANL’s Globus software for
handling file transfers were wrapped into a
Python module and plugged in to replace an
FTP component in the already-working demo.
No recompilation of our demo was needed
since we accomplished this as a dynamic
Python module. This was important in that we
did not need to set up our ANL partners with a
complete development environment.

• The newly-available Distutils let us write a setup
and installation script for our partners, who had
never seen Python and had no idea how to
build an extension for it. Distutils is being
developed at CNRI by Greg Ward as part of the

distuils-sig effort to create easy methods for
constructing and installing Python packages.

• The standard Python library supplied us with
key components for the original FTP version,
handling of URL’s, communication with the
LDAP servers, as well as the usual use of pack-
ages such as os, string, and sys.

• Vtk, a 3-D visualization package, was used to
make the final picture. It had a Python interface
that allowed us to prototype what we wanted,
although bugs in the barely-developed Python
interface eventually drove us to run it under tcl
instead for this particular demo.

2.3 The scientists get in on the act

One of the frequently-observed benefits of this sort
computational steering, in which an interactive scriptin
language is used to perform scientific calculations,
that it enables the creativity of the scientific staff to b
brought to bear in order to solve their own problem
This allows for the computer science staff to be mu
smaller than it would have to be if every request fo
enhancement or every need for a new algorithmic co
ponent had to be achieved by modification to an “off
cial” program. With our approach, there is no
bottleneck; users can do many things for themselves
directly enhance the software to solve their own pro
lems.

The more computationally-adept members of the co
munity create their own tools, including small GU
interfaces, based on our components. This allows in t
other people to run the software easily and accurately

3.0 Tools

Two of the tools developed for our work may be o
interest to others. The newest one, Pyfort, is a tool
connecting Fortran to Python. CXX, described in a
paper at the Seventh International Python Conference
a tool for creating Python extensions using the C++ la
guage rather than C. These tools and their docume
tion are available at the LLNL Python website, http
xfiles.llnl.gov. A link to this page is “Python at LLNL”
on www.python.org.

3.1 Pyfort

Pyfort is a tool for connecting Fortran routines to
Python. While connecting Python to Fortran routines

of

o-

at
sual
rs.

n
cts
ct
rd
c-
c-

n
 is
ed
possible using such tools as SWIG ([3]), doing so
requires considerable knowledge and a syntax unfamil-
iar to a Fortran-programming scientist. Since Fortran’s
1990 standard included a syntax for describing the inter-
faces to Fortran routines, it seemed natural to build on
that syntax as an input language to a Python / Fortran
connection tool.

For example, here is the Pyfort input used to create a
Python extension module “amodule” that connects
Python to a routine f (n, x, y), where x is an array of
length n that calculates results and stores them in an
array y, also of length n.

module amodule
subroutine f (n, x, y)
integer n = size (x)
real x(n)
real, intent (out):: y (n)
end

end

The language used to describe the routine f is nearly
identical to the Fortran interface block that would be
written to ensure type checking in Fortran 95. Here the
declaration of the integer n lets the user indicate that n is
to be calculated from the size of the array x, so that it
doesn’t have to be passed as a separate argument from
Python. Use of this feature is optional, of course.

After running Pyfort and creating the extension module,
a process that takes just a few minutes, a dynamically-
loaded module is available for importing into Python.
The user can then call the Fortran subroutine f from
Python using a natural syntax:

y = f (x)

Pyfort is capable of generating a sample input file for
the Distutils. The user simply has to fill in the appropri-
ate details to build and install the package. We hope to
capture the community’s knowledge about different For-
tran compilers and systems to complete this facility.

3.2 Recent developments in CXX

CXX is a package of header files and supporting run-
time source that enables the construction of extensions
to Python in C++. The idea behind CXX, as described in
the paper presented last year [4], is twofold. First, the
Python C API is wrapped into a series of classes such as
Object, Dict, and Tuple. C++ exceptions are converted
into Python exceptions and all intermediate objects are
cleaned up automatically in such as case. As a result,
reference counting errors are nearly eliminated, along

with complicated cleanup logic and extensive testing
return values from the Python C API.

For example, the following CXX code creates a dicti
nary and adds two named (Python) integers to it:

Dict d;
d [“one”] = Int (1);
d [“two”] = Int (2);

The CXX class hierarchy for this portion is shown in
Table 1.

TABLE 1. CXX Class Heirarchy
Object

Type
Module
Integer
Float
Long
Complex
Char (Strings of length 1)
SeqBase<T>

Sequence (= SeqBase<Object>)
String
Tuple
List
Array (NumPy array)

MapBase<T>
Mapping (= MapBase<Object>)
Dict

Exception
StandardError

IndexError
RuntimeError

... (more classes corresponding to the Python
exception heirarchy).

In addition there are a number of functions defined
the global (namespace Py) level. These include the u
binary arithmetic operators and stream output operato

The second part of CXX is more experimental; it is a
attempt to make it easier to construct your own obje
and extension modules, without having to constru
odd-looking tables and use mysterious non-standa
constructions such as the infamous “staticforward” de
laration. Barry Scott has substantially revised this se
tion of CXX with some assistance from Paul Dubois.

Scott’s new extension facilities for creating Pytho
modules are now quite satisfying. For example, here
the coding to create a Python extension module nam

i-

f
ty

s
lect
ni-
r

“example” containing a method “sum” that adds its
floating-point arguments:

class example_module : public
ExtensionModule<example_module>
{
public:

example_module():
ExtensionModule<example_module> (“example”)

{
add_varargs_method (“sum”, ex_sum,

“sum (arglist) = sum of arguments”);

initialize (“documentation for module”);
}

virtual ~example_module () {}

private:
Object ex_sum (const Tuple &a)
{

Float f (0.0);
for(int i = 0; i < a.length (); i++)
{

f = f + Float (a[i]);
}
return f;

}
}

Note the support provided by the CXX machinery. For
example, if one of the arguments to “sum” is not a
Python floating-point number, an exception is thrown,
any temporary objects such as f are cleaned up, and a
Python exception results.

Now we add the initialization routine Python requires,
which now must only construct a permanent instance of
our module class:

void initexample()
{

static example_module *example =
new example_module;

}

This example has been simplified from the one in the
CXX package for expository purposes. Potential users
should consult the files in the Demo directory for further
examples, including use of the new extension object
facility.

4.0 References

1. This work was produced at the University of Cal
fornia, Lawrence Livermore National Laboratory
(UC LLNL) under contract no. W-7405-ENG-48
(Contract 48) between the U.S. Department o
Energy (DOE) and The Regents of the Universi
of California (University) for the operation of UC
LLNL. The views and opinions of the author
expressed herein do not necessarily state or ref
those of the United States Government or the U
versity of California, and shall not be used fo
advertising or product endorsement purposes.

2. Bertrand Meyer, “Object-Oriented Software Con-
struction”, 2nd Edition, Prentice-Hall, N.J., 1998.

3. Beazley, D.M. "SWIG and automated C/C++
scripting extensions". In Dr. Dobb's Journal, 282
(Feb. 1998),p. 30-36.

4. P. F. Dubois, “A facility for extending Python in
C++”, in Proceedings of the Seventh Internation
Python Conference, Foretec Seminars, Reston, VA,
1998. pp. 61-68.

	1.0 Introduction to climate modeling
	1.1 Climate modeling and weather prediction
	1.2 The role of PCMDI

	2.0 PCMDI’s Software Suite
	2.1 Architecture
	2.2 The Next Generation Internet Project
	2.3 The scientists get in on the act

	3.0 Tools
	3.1 Pyfort
	3.2 Recent developments in CXX

	4.0 References

