
NetWare Programming with Python

Brad Clements
MurkWorks, Inc.

bkc@murkworks.com
-
l-

.
8

y
a

de.
s

nc-

res
g
eb

,
c-

n

g

to
sed
ile

,

ss
e-

e
er.
-

Abstract
Accessing Novell Directory Services using Python
classes is described. Using SWIG to encapsulate the
NDS APIs for use by Python is shown along with Python
classes developed to provide a more natural Python-like
interface to NDS. SWIG typemaps and pseudo-classes
and their application to this project are reviewed. NDS
integration with Zope to provide an HTML interface to
Novell Directory Services is demonstrated. Finally, a
port of Python to NetWare as an NLM and the associ-
ated porting difficulties are discussed.

1 Introduction to Novell NetWare
Novell NetWare was the first Intel x86 based file server
to reach the market. Developed in the early 1980’s, it
provided file sharing and printing services to 8086
based PCs. Since those early days NetWare has grown in
functionality and size, maintaining its lead in the x86
based server market.

1.1 Server
With the introduction of NetWare 3.0, the file server
architecture moved to 32-bit processors with a multi-
threaded operating system. Earlier versions of NetWare
were ‘monolithic’ applications -- all functionality was
built-in to a single executable. NetWare 3.0 introduced
the NLM (NetWare Loadable Module) that allowed fea-
tures to be loaded as needed.

Architecturally, NLMs appear to be a cross between a
Windows 16-bit DLL and a Unix process. Typically
only one image of an NLM can be loaded in memory at
any given time, but an NLM image can be re-used by a
new executing process like a shared library. Global vari-
ables are per-NLM, not per-process, making some port-
ing projects difficult. NLMs are written in C, with some
limited C++ support.

NetWare is a non-preemptive operating system where all
NLMs run at ring-0 privilege level. This allows NetWare

to perform well, but errant NLMs can over-write mem
ory and crash the system. NLMs must run within avai
able RAM. Virtual Memory capability was not made
available until Netware 5.0 was released, in 1998.

NetWare 3.0 ran in a minimum of 8 megabytes of RAM
Today’s NetWare 5.0 recommends a minimum of 12
Meg of RAM, more depending on disk capacity. Earl
NetWare versions were viewed as nothing more than
fast disk channel with a disk cache strapped on the si
In the continuing server market race against Window
NT, customers demanded increased server-side fu
tionality and reliability.

To meet market demands, Novell added many featu
to NetWare in an attempt to keep pace with competin
products. Features such as Netscape Enterprise w
server, BorderManager firewall, WAN routing, Xfree
Java, and an X.500 style directory dubbed Novell Dire
tory Services (NDS).

NDS is the central feature of this paper, and I’ll touch o
it more later.

1.2 Clients
Early releases of MS-DOS did not have any networkin
functionality. Novell distributed its own client software
called a requester that allowed MS-DOS workstations
access NetWare file server resources. The protocol u
to communicate between the requester and the f
server is proprietary.

However when Microsoft released Windows 95
Microsoft also included it’s own implementation of a
requester that allowed Windows 95 systems to acce
NetWare file servers. Microsoft had apparently revers
engineered the proprietary client-server protocol.

Unfortunately only a subset of the existing NetWar
APIs had been implemented in the Microsoft request
Novell continued to provide its own requester for Win

at
ed

e-

ch
be
nt
an
ts,
n
ts,
c-

-
le,

of
e-
dows 95, then Windows NT and Windows 98. Novell’s
requester is the only way to access all of the NetWare
APIs, including Novell Directory Services functions.

Novell has made a limited set of APIs available for
Solaris, and Caldera’s Linux. NLMs also have access to
the same APIs that are available to client systems using
Novell’s requester.

2 Novell Directory Services
When NetWare 4.10 was released, Novell included an
implementation of an X.500 directory service dubbed
Novell Directory Services, or NDS. Like X.500, NDS
allows a hierarchy of arbitrary objects to be represented
in a tree-like structure. NDS objects are defined by their
Schema entry, that describes how the object is named,
its superclasses, mandatory and optional attributes.
Figure 1 provides a pictorial representation of NDS
from a design standpoint.

Since its initial release, Novell has continued to improve
and expand NDS’s functionality, reliability and perfor-
mance. Novell’s marketing push has NDS functionality
appearing in major software applications, routers, man-
agement suites, databases, etc.

2.1 Schema
The NDS Schema defines the structure of objects th
can be stored in the directory tree. Objects are defin
by the following features:

• Superclass - Acquires attributes from one or more
parent classes

• Naming - Defines how an NDS tree object is
uniquely named in the tree

• Containment - Regulates where objects can be cr
ated within the tree

• Mandatory and Optional Attributes -
• Default Access Control List - defines access per-

missions to the NDS object and its attributes

2.2 Objects
An NDS object can represent a user or a resource, su
as a file server, printer, disk volume, etc. Objects can
created within the NDS tree subject to their containme
properties. For example, an Organization object c
contain other objects, such as Organizational Uni
Localities and Domains. An Organizational Unit ca
contain Users, Servers and other Organizational Uni
but not Organizations. Figure 2 shows a sample dire
tory tree with objects arranged in tree-like fashion.

Each object in the tree is uniquely identified by it’s nam
ing attributes, as specified in the schema. For examp
my User object is CN=BKC.OU=Engineer-
ing.O=MurkWorks.

3 Encapsulating NetWare APIs with SWIG
The Novell NetWare API set consists of thousands
functions, hundreds of structures and thousands of typ

FIGURE 1. Novell Directory Services Architecture

FIGURE 2. NDS Objects are arranged in a tree-like
hierarchy.

by
o
el
S
udo

a
-

r,

he
n-

to
r
s
s
m-

i-
defs. I chose to tackle the NetWare API by first concen-
trating on the NetWare Directory Services API subset.

The NDS API has approximately 184 functions, 25+
structures and 1047 typedefs or constants. The NDS API
is well thought out and ‘orthogonal’ -- that is, there is no
overlap in functionality between individual APIs, and
the APIs fit together well, requiring no data transforms
between functions.

Because NLM development is difficult, I chose to target
Windows NT as the initial development platform, with
an eye for migrating to NetWare NLMs later. Because
the NLM environment does not support C++ code well,
I chose to use SWIG rather than CXX as the means to
extend Python.

I compiled SWIG 1.1 (Build 685) using Borland C++
5.01 on Windows NT 4.0. The resulting SWIG produced
.c file was also compiled with the Borland C++ Com-
piler. Although Visual C was also available, using Bor-
land C throughout the project would allow for an easier
port to NetWare as an NLM.

3.1 SWIG Pseudo-Classes
One of the objectives of using Python to develop Net-
Ware applications was to simplify the interface to NDS.
The NDS API is designed to be used by C, Pascal and
Visual Basic applications. It is strictly a procedural API
-- no objects or classes are used. Managing NDS objects
and the NDS schema involves allocating acontext han-
dle that controls which Directory Tree is to be accessed,
and where in the tree are we are operating. Thecontext
handlemust be passed to all NDS functions.

When reading or writing object or schema class proper-
ties, aBuf_Tstructure must be allocated and passed to
the appropriate Read/Write functions. Binary data val-
ues are packed/unpacked to/from theBuf_T structure
through a subset of the NDS API. For example, Figure 3
shows theNWDSPutAttrValfunction that adds an arbi-
trary value to aBuf_Tstructure.

Both the context handleand theBuf_T structure lend
themselves to being wrapped in a class structure of some

kind. These items must be allocated, are referenced
many functions, and must be explicitly freed when n
longer needed. Figure 4 shows three SWIG lev
“classes” developed to ease interfacing with the ND
APIs. These are not true classes, rather they are pse
classes defined using the SWIGaddmethodsoperator.

Figure 5 shows the SWIGcode used to create the
NWDSBufpseudo-class. The pseudo-class includes
constructor that allocates a block of memory. If no argu
ment was passed to the constructo
DEFAULT_MESSAGE_LENis used as the memory
block size, otherwise the value passed is used. T
destructor frees the memory block allocated by the co
structor.

Using a pseudo-class to represent a buffer allows me
subclass NWDSBuf in Python and add NDS buffe
manipulation functions as methods of NWDSBuf. Thi
allows buffers to follow an object oriented model that i
easier to use than the procedural NDS APIs. For exa
ple, the NWDSPutAttrValfunction shown in Figure 3
could become a method of an NWDSBuf object, elim
nating the need forcontextandbuf to be passed to the
function.

Finally, a SWIGtypemapis used to coerce functions to
accept aNWDSBufwherever apBuf_Twould normally
be used. This is explained further in Section 3.4.

NWDSCCODE NWDSPutAttrVal(

NWDSContextHandle context,
pBuf_T buf,
nuint32 syntaxID,
nptr attrVal

);

FIGURE 3. Typical NDS function usescontextand Buf_T,
returns int result

FIGURE 4. SWIG “ classes”ease interfacing to NDS APIs

NWDSContext

+NWDSContext()
+~NWDSContext()
+__getitem__(self : _, index : int)
+__setitem__(self : _, index : int, value : any)
+__getattr__(self : _, name : any)

-context : ContextHandle

NWDSBuf

+NWDSBuf()
+~NWDSBuf()

-buf : pBuf_T

NDSCore_String

+NDSCore_String(size : int = NDSCORE_STRING_LEN)
+~NDSCore_String()
+Address() : long
+__getslice__(self : _, low : int, high : int) : PyObject *
+__setslice__(low : int, high : int, seq : PyObject *)
+Fill(size : int, value : int = 0)

-Data : char

r
ve
3.2 Conflicts with SWIG
The SWIGaddmethodsoperator makes it easy to associ-
ate arbitrary ‘methods’ with data structures. I did
encounter a problem adding a__getattr__method to the
NWDSContextclass.

Figure 6 shows the SWIG code used to add__getattr__
to theNWDSContextpseudo class. I needed to provide
my own __getattr__implementation because I wanted
to treat index lookups and attribute lookups the same for
this pseudo-class.

Unfortunately SWIG always generates its own
__getattr__ implementation in the generated shadow
class. As a result, SWIG produces the Python code
shown in Figure 7, consequently conflicting with the

__getattr__method defined using theaddmethodsoper-
ator.

I do not know of a work-around to this problem, othe
than hand-editing the produced Python code to remo
the second__getattr__.

struct NWDSBuf {

pBuf_T buf;

};

%addmethods NWDSBuf {

NWDSBuf(int siz=DEFAULT_MESSAGE_LEN) {

/* constructor */

NWDSCCODE res;

struct NWDSBuf *me =

(struct NWDSBuf *) malloc(sizeof(*me));

if(NULL == me) {

PyErr_NoMemory();

return NULL;

}

me->buf = NULL;

if(siz > 0) {

res = NWDSAllocBuf(siz,&me->buf);

if(0 != res){ /* an error occured */

ThrowException(res,"NWDSAllocBuf",NULL);

free(me);

return NULL;

}

}

return me;

}

~NWDSBuf() {/* destructor */

if(self) {

if(self->buf)

NWDSFreeBuf(self->buf);

free(self);

}

}

}

FIGURE 5. SWIG code to create NWDSBuf Pseudo-Class

struct NWDSContext {
NWDSContextHandle Context;

};

%addmethods NWDSContext {
...

PyObject *__getattr__(char *attr);
}
...
%wrapper %{

PyObject *NWDSContext___getattr__(

struct NWDSContext *self,char *attr)

{
if(!stricmp(attr,"Context"))

return Py_BuildValue("l",self->Context);

else {

int which =

NWDSContext_Convert_AttributeText(attr);

if(-1 == which) {

ThrowException(-1,

"NWDSContext__getattr__",

"Invalid attribute name");

return NULL;

}

return NWDSContext___getitem__(

self,Py_BuildValue("l",which));

}
}
...

FIGURE 6. Implementation of __getattr__causes conflicts
with shadow class

def __getattr__(self,arg0):

""""""

val = ndscorec.NWDSContext___getattr__(

self.this,arg0)

return val

<snip code removed>
def __getattr__(self,name):

if name == "Context" :

return ndscorec.NWDSContext_Context_get(

self.this)

raise AttributeError,name

FIGURE 7. SWIG produced shadow class replicates
__getattr__

al

is
t

-
ng
3.3 Extracting API info from .h files
SWIG was designed to accept existing .h files. The Net-
Ware APIs defined in the .h files were designed to be
used on multiple operating systems and compilers. To
accomplish this, Novell added several layers oftypedefs
and macros to the .h files. SWIG is unable to properly
process the .h files because it does not have a full pre-
processor.

The simplest solution I found was to copy the typedefs
and structures from each .h file and paste it into my own
SWIG .i file for processing as shown in Figure 8. The
function definitions from each NetWare .h file were then
copied to their own .i file using a parallel naming
scheme.

3.4 Using SWIGin Typemaps
SWIG typemaps are used to coerce the NDS API func-
tions to accept pseudo classes in place of thecontextand
pBuf_T arguments called for. Figure 9 shows the two
typemaps used forpBuf_Tandcontext.

In both cases, thein typemap operation is defined for the
target variable type. For example, wherepBuf_T is
called for in the NDS API, we expect the user to pass a
NWDSBuf type. The SWIG produced shadow class
automatically passes a string “pointer” to the NWDS-

Buf, which is converted to a real pointer by the
SWIG_GetPtrfunction. After conversion, the NWDS-
Buf structure is dereferenced to obtain the actu
pBuf_T value to pass to the NDS function.

3.5 Automatic Exceptions, crashing Python
All NDS APIs return an integer result codeNWDSC-
CODE indicating success if zero. By applying the
typemap shown inFigure 10, an exception is automati-
cally raised by the NDS API whenever the result code
non-zero. If the result code is zero, its value is no
returned because it is not needed.

This is a very handy way of catching errors in the func
tion or its arguments, but there are two problems usi
this technique.

• Functions that return values other than the return
code causePy_Noneto be incremented, but not
returned

• Parameters passed by reference are not returned
when an exception is thrown

%module ndscore
%include "pointer.i"

%{
#include "nwdsdc.h"
<other required .h files >
%}
...
%include "typemaps.i"

%init %{
NWNetInit(NULL,NULL);
/* initialize NDS libraries */

%}
<all typedefs >
<all constants >
<all structures >
<pseudo-class definitions for NWDSContext

and friends >

<typemaps >
%include "nwdserr.h"
%include "nwdsdc.i"
%include "nwdsmisc.i"
%include "nwdsasa.i"
%include "nwdsacl.i"
... < more .i files >
%wrapper ..

FIGURE 8. General format of the master SWIG .i file

%typemap(python,in) pBuf_T {

if ($source) {

struct NWDSBuf *_temp;

if (SWIG_GetPtr(PyString_AS_STRING($source),

(void **) &_temp,"_struct_NWDSBuf_p")) {

PyErr_SetString(PyExc_TypeError,

"Type error in argument.\

Expected _struct_NWDSBuf_p.");

return NULL;

}

$target = _temp->buf;

}

}

%typemap(python,in) NWDSCONTEXT {

if ($source) {

struct NWDSContext *_temp;

if (SWIG_GetPtr(PyString_AS_STRING($source),

(void **) &_temp,"_struct_NWDSContext_p")) {

PyErr_SetString(PyExc_TypeError,

"Type error in argument.\

Expected _struct_NWDSContext_p.");

return NULL;

}

$target = _temp->Context;

}

}

%apply NWDSCONTEXT {NWDSContextHandle};

FIGURE 9. SWIG Typemap coerces pBuf_T and
NWDSContextHandle to use pseudo-class objects

e
e
le

:
ies

he
s.

er

-

,

f

e
i-

e
r

ree

ess

an
ot

S

In the first case, originally I did not
Py_INCREF(Py_None)in the exception processing
code, thinking that this would resolve the problem
where Py_None would be incremented, but never
returned. I wanted to avoid having a non-zero reference
count on Py_None when Python exited. However I
found that when an NDS function was called that had a
return type of void, Py_None was returned by the code
shown in Figure 10.

Eventually Py_None would be DECREF’d to a negative
number, thereby causing an exception in my .DLL (and
crashing the NLM) whenever the NDS module was
unloaded.

I did not expect that decrementing the reference for
Py_None to 0 would cause a fatal crash. Adding the
Py_INCREF(Py_None) to the code shown in Figure 10
corrected the problem. A better solution needs to be
found to this problem. Perhaps rethinking my design, or
adding functionality to SWIG to avoid the unnecessary
Py_None increment.

Also, I suggest a change in Python 1.6 to not-crash if a
reference count goes negative on built-in statically allo-
cated values such as Py_None. Perhaps a simple warn-
ing could be printed instead.

3.6 Linking to NetWare DLLs, packaging
SWIG produces a .c file which is compiled by Borland
C into a DLL after linking with Novell supplied librar-
ies. The resulting .DLL can be loaded on any WIN32
workstation if that workstation is running Novell’s
requester.

When porting Python to NetWare as an NLM, the .c fil
was compiled directly into Python as a built-in modul
because dynamic binary module loading is not availab
on NetWare yet.

4 Representing NDS with Python Classes
The NDS API can be divided into two major sections
Schema and Tree Objects. These two major categor
are each represented by their own Python module.

4.1 Why Python
To access Directory Services, the NDS API requires t
programmer to follow a complicated sequence of step
For example, to read the GUID attribute of an NDS Us
object:

• Create context handle
• Allocate input and output buffers
• Populate input buffer with desired attribute,guid
• Iteratively call NWDSRead, passing in context, tar

get object name, input and output buffer and itera-
tion handle

• Iterate over output buffer, extracting attribute name
syntaxId and values

• If NWDSRead is aborted prematurely, free iteration
handle

• Free buffers and context
Python naturally lends itself to a gross simplification o
this process, by reducing it to these steps:

• Create NWDSContext object
• Retrieve NDSObject
• Read the attribute
Using exceptions allows us to automatically releas
buffers, context and iteration handle if desired. Add
tionally, the Pythonfor/in operator is a convenient
mechanism for iterating over the objects of an NDS Tre
through the use of an xrange-like NDSTreeIterato
object.

4.2 NDS Objects
Two Python classes are used to access NDS T
Objects, as shown in Figure 11. AnNDSTreeObject
encapsulates all of the NDS APIs that are used to acc
NDS Objects and their properties. TheNDSTreeIterator
object is used to iterate through the subobjects of
NDS Tree object, for example, all the objects in the ro
Organization.

The NDSTreeObject.__repr__ method returns the ND
distinguished name of the object.

%except(python) {

$function

if(PyErr_Occurred()) {

return NULL;

}

}
%typemap(python,out) NWDSCCODE {

if(0 != $source) {

ThrowException($source,"$name",NULL);

return NULL;

} else {

Py_INCREF(Py_None);

$target = Py_None;

}

}

FIGURE 10. Automatically throw exception if return code
non-zero.

t-

to
eir

g
l
re
to

e-

.
d

-

g
e

e
-
.
t-

to

ct
r-
Figure 12 shows how the NDSObject classes are used.
An NDSContextobject is created and its settings are
changed to reference the treeTestTree, with a default
naming context ofMyCompany. The root of the tree is
obtained and it’sGUID attribute is retrieved. Finally, all
leaves of the root are listed using theNDSTreeIterator
created through theNDSObject.List() function.

4.3 Schema
Four Python classes are used to access the NDS Schema
APIs as shown in Figure 14. The four classes include:

• NDSSchemaClassObject - Represents a Schema
class

• NDSAttribute - Holds the properties of an attribute

• NDSAttributeContainer - Caches NDSAttribute
objects

• NDSSchema - A factory class for NDSSchema-
ClassObject and contains a reference to an NDSA
tributeContainer.

Figure 13 shows how the NDSSchema object is used
iterate over all defined Schema Classes and display th
superClassNames. TheNDSSchema.keys()function
returns a list of Schema Class Names. TheNDSS-
chema.__getitem__function is used to return anNDSS-
chemaClassObject which in turn references its
superClassNamesattribute.

5 Using Python to access NDS from Zope
“Zope” is an acronym for “Z Object Publishing Envi-
ronment.” In Zope, web pages are built by addin
“objects” and modifying object “properties”. Severa
built-in objects like Folders, Documents, and Images a
included in the software and are combined together
produce a completed web site.

5.1 External Procedures
Zope allows externally defined Python code to be ex
cuted within the context of a Web request. TheseExter-
nal Proceduresmay in-turn load other Python modules
I added functionality from the NDSSchema an
NDSObject Python classes to Zope through a few sim
ple external procedures.

5.2 Tree View of NDS Objects
One of the most common NDS operations is browsin
NDS Tree Objects and their properties. Using th
NDSTreeIterator object in conjunction with the Zop
#treeDHTML tag, it is easy to create a tree-like hierar
chical listing of NDS Objects as shown in Figure 15
The left side of the frame displays NDS objects. Selec
ing an Object updates the right side of the display
show the Object properties and attributes.

To create the object display, the NDSTreeIterator obje
was used to generate a hierarchal list of objects in a fo
mat usable by the Zope#tree tag. When a object is

FIGURE 11. NDS Object Python Classes

from NDSObject import *
>>> c = NWDSContext()
>>> c[DCK_TREE_NAME] = "TestTree"
>>> c[DCK_NAME_CONTEXT] = "MyCompany"
>>> obj = NDSTreeObject(c,"")
>>> obj['GUID']
'\000\234k\274\214\014\...'
>>> for leaf in obj.List() :
... print leaf
...
'CN=DNSDHCP-GROUP'
'CN=SMS SMDR Group'
'CN=PIT'
'CN=PIT Backup Queue'
'CN=admin'
'CN=anonymous'
'CN=bkc'
(more)

FIGURE 12. Iterating over NDS Tree objects using the
NDSTreeIterator object

NDSTreeIterator

+__init__(self : -, context : NWDSContext, DN : char * = "")
+__del__(self : _)
+_GetNextItem(self : _)
+List(self : _)
+__getitem__(self : _, index : int) : NDSTreeObject

-DN : char
-context : NWDSContext
-opType : int
-iterationHandle : long
-nextItemIndex : int

NDSTreeObject

+__init__(self : _, context : NWDSContext, DN : char * = "", loadOptions : int = -1)
+__repr__(self : _)
+_readItems(self : _, list : list, toGet : int = DS_ATTRIBUTE_NAMES, readNothing : bool = FALSE)
+containable(self : _) : bool
+__getitem__(self : _, index : char)
+keys(self : _) : list
+List(self : _, targetDN : char * = None) : NDSTreeIterator

-DN : char
-readAllKeys : boolean = FALSE
-gotContainable : bool = FALSE
-context : NWDSContext
-syntaxDict : dict
-attrValues : dict

from NDSSchema import *
>>> c = NWDSContext()
>>> factory = NDSSchema(c)
>>> for cl in factory.keys() :
... print cl, factory[cl].superClassNames
Application (Windows 95) ['Application', 'Top']
Computer ['Device', 'Top']
App:Folders ['Top']
Container Policy ['Policy Type', 'Top']
(more)

FIGURE 13. Iterating over NDS Schema Class objects to
display their superclasses

s-
6.
are

ses
es,
da-

ly
of
lass

a
m
-

e

selected, the referenced object is retrieved via an
NDSTreeObject object. The objects attributes and val-
ues are then displayed in the right-hand frame.

5.3 NDS Schema Class Definitions
Similarly, NDS Schema Class definitions can be di
played using a tree-like hierarchy as shown in Figure 1
The left side displays Schema Classes, as they
derived from their respective SuperClasses.

Selecting a Schema Class in the left-hand frame cau
the right-hand frame to display Schema Class attribut
including the Class’s flags, superClassNames, man
tory and optional attributes.

In this example, theNDSSchema.keys()function is
called sequentially to return a list of classes whose on
parent class is “top”. Subsequnetly expanding one
these classes returns a list of classes whose parent c
is the selected class.

6 Porting Python to NetWare as a NetWare
Loadable Module
As previously mentioned, Novell NetWare is based on
32-bit non-preemptive, multi-threaded operating syste
where all processes execute at ring-0. With virtual mem
ory only recently becoming available, NLMs must b

FIGURE 14. NDS Schema Python Classes

NDSAttribute

+__repr__(self : _) : char *

-Name : char
-syntaxID : int
-flags : int
-asn1ID : oid
-lower : int
-upper : int

NDSAttributeContainer

+__init__(self : _)
+__getitem__(self : _, index : int)
+keys(self : _) : dict
+_readDef(self : _, attrList : list, toGet : int = DS_ATTR_DEFS)
+_extractAttrDefinition(self : _, outbuf : NWDSBuf, toGet : int)

-context : NWDSContext
-attrDict : dict
-gotAllAttrs : bool

NDSSchema

+__getitem__(self : _, index : char)
+keys(self : _) : list

-context : NWDSContext
-classDict : dict
-Attributes : NDSAttributeContainer
-gotAllNames : bool = false

NDSSchemaClassObject

+__init__(self : _, context : NWDSContext, ClassName : char *, loadOptions : int, Attributes : NDSAttributeContainer, SchemaFactory : NDSSchema)
+keys(self : _) : list
+__getitem__(self : _, index : char) : NDSAttribute
+__repr__(self : _) : char *
+_readDef(self : _, toGet : int = DS_EXPANDED_CLASS_DEFS, SchemaFactory : NDSSchema = None)
+_extractClassDefinition(self : _, outBuf : NWDSBuf, toGet : int, SchemaFactory : NDSSchema = None)

-className : char
-context : NWDSContext
-mandatoryAttributes : list
-optionalAttributes : list
-namingAttributes : list
-containmentClassNames : list
-superClassNames : list
-Attributes : NDSAttributeContainer

1..n
1..n

FIGURE 15. Zope Tree Hierarchy shows NDS Objects and
their attributes

ke

-

et
n-
el

e

s

r

h
ted
carefully constructed to run successfully in this environ-
ment.

The ultimate goal of my project is to port Python 1.5.2
and Zope to NetWare, capitalizing on the built-in Oracle
8 server, Netscape Enterprise Server and NetWare
Directory Services functionality. Unfortunately the
design of the NetWare operating system is nothing like
the Unix and Windows systems to which Python has
already been ported. NLMs are loaded into a global
namespace -- exported symbol names must be unique
across all NLMs, etc.

Each NLM can only be loaded once unless extraordi-
nary measures are taken. When NLMs are unloaded,
they must release all of their allocated memory and
semaphores, otherwise the NetWare server may abend.
Although NLMs can simulate the functionality of
shared libraries and DLLs, there is no concept of per-
process private memory, making inter-process and inter-
NLM data corruption a strong possibility.

6.1 Development environment and tools
When porting Python to NetWare, I used Borland C++
5.01 with Base Technology’s NLINK Pro. Novell sup-
plies .h files and import libraries for use with this and
other compilers, including Watcom and Metrowerks,
and Microsoft Visual C.

NLMs are compiled on a Windows NT workstation,
then copied to the target NetWare server for execution.
Debugging is achieved using a very crude assembler
interface built in to the NetWare operating system.

6.2 Messy Python config.h
Python attempts to use a singleconfig.hfile to set com-
pile-time and run-time options. Unfortunately the
Python distribution assumes that the compiler ma
establishes the target run-time system.

For example, the suppliedconfig.h assumes that if
__BORLANDC__is defined, then Python is being com
piled for 16-bit DOS.

I think the best solution to theconfig.h problem is to
make a distinction between the compiler and the targ
operating system. Rather than automatically setting ru
time features based on the compiler type, a two lev
#ifdef is needed.

Finally, the tail end ofconfig.h has many optional
#defines setting various run-time options, but thes
options must be enabled by hand editing theconfig.h
file. A two level config.hshould address this problem a
well.

6.3 Socketmodule
Using config.h is a good idea for centralizing all com-
pile-time and run-time options. Unfortunately othe
modules sneak in their own#ifdef morass rather than
usingconfig.h. The socketmodule is an example of suc
a module, and worse, it uses a confusing array of nes
#ifdefsto control compile time options. For example:

#ifdef __BEOS__
block = !block;
setsockopt(s->sock_fd, SOL_SOCKET,

SO_NONBLOCK,
(void *)(&block), sizeof(int));

#else
#ifndef MS_WINDOWS
#ifdef PYOS_OS2

block = !block;
ioctl(s->sock_fd, FIONBIO, (caddr_t)&block,

sizeof(block));
#else /* !PYOS_OS2 */

delay_flag = fcntl (s->sock_fd, F_GETFL, 0);
if (block)

delay_flag &= (~O_NDELAY);
else

delay_flag |= O_NDELAY;
fcntl (s->sock_fd, F_SETFL, delay_flag);

#endif /* !PYOS_OS2 */
#else /* MS_WINDOWS */

block = !block;
ioctlsocket(s->sock_fd, FIONBIO,

(u_long*)&block);
#endif /* MS_WINDOWS */
#endif /* __BEOS__ */

FIGURE 16. Zope Tree Hierarchy navigates Schema Class
Definitions

th-

n
ma
C

the
es

in

i-
e

e
e-
ap-

ati-
e.
ple
-

d
re

ral

y
r-
r

a
er
.
,

a-
y

The above code is a small example of how#ifdefuse can
get out of hand if not carefully used. My suggestion for
future Python versions is to not use nested#ifdefs, but
rather something like the following:

#undef CODE_COVERED
#if __BEOS__ && !defined(CODE_COVERED)
... do BEOS specific
#define CODE_COVERED
#endif
#if __NLM__ && !defined(CODE_COVERED)
.. do NLM specific
#endif
#ifndef CODE_COVERED
#error no code for this section
#endif

The above code allows additional platforms to be easily
supported because it is very clear where the new code
should be inserted.

6.4 Threads
The initial NetWare port of Python did not have threads
enabled. NetWare supports three types of threads:
worker threads, threadgroups and regular threads.
Worker threads have no context and are used by the
operating system. Threadgroups have their own context
such asconnection, logged in user, screen. Regular
threads are sub-threads of a parent thread group.

The threading module will likely produce regular
threads, but developers may wish to create new thread-
group threads to enable Python scripts to execute as
multiple logged in users. More thought in this area is
needed.

7 Future Development
TheNetWare Programming with Pythonproject has two
major goals, creating client-side NDS development tools
and applications, and porting Python to NetWare as an
NLM.

7.1 NDS tools
Python based client-side NDS tools promise to allow
developers to investigate the NDS API without suffering
through an exhaustive edit-compile-test cycle. NDS
APIs can be exercised interactively. Python allows NDS
Objects and Schema Classes to be represented in an
easy-to-understand object oriented fashion. This allows
programmers to develop program concepts around NDS
without getting bogged down in the difficult details of
NDS APIs.

Additionally, Python can be used as a code generator —
automatically producing the necessary C code to manip-

ulate NDS Directory Objects and Schema Classes wi
out mind-numbing repetition of hand written code.

7.1.1 Schema builder
By combining the NDS Python classes with Zope, a
NDS Schema Class builder can be realized. The Sche
builder allows the developer to automatically generate
code for creating an NDS Schema Class by selecting
SuperClass(s), mandatory and optional attribut
through an HTML interface generated by Zope.

New Schema attributes can be created and retained
the Schema Builder through the use of a ZopeZClass
object. Finally, DHTML methods generate the appropr
ate C code for inclusion in server-side or client-sid
applications.

7.1.2 Snap-in generator
Snap-Ins are Windows DLLs that enable NWAdmin (th
NetWare Directory Services Management tool) to cr
ate, display and manage custom directory objects. Sn
In development is very difficult and time consuming.

The Schema Class Builder can be expanded to autom
cally generate basic NWAdmin Snap-In source cod
Using a template system and layout manager, a sim
Windows Dialog with multi-edit page tabs can be pro
duced.

7.2 Porting Python to NetWare
The initial port of Python 1.5.2b1 to NetWare prove
that Python could be made to operate in the NetWa
server environment. To be completely useful, seve
major improvements need to be made to the program.

7.2.1 Memory management
All built-in and dynamically loaded binary modules
must be able to gracefully recover from, or properl
handle, a failed memory allocation. To pass Novell ce
tification, the Python NLM must not crash, corrupt o
abend the file server when a memory allocation fails.

Although most users will probably load Python in
ring-3 process to obtain access to virtual memory, old
versions of NetWare do not have this functionality
Python must properly free ALL allocated memory
sockets and other resources before it is unloaded.

7.2.2 Module finalization
To properly release allocated resources, module finaliz
tion must be added to Python. A builtin or dynamicall

loaded binary must be able to free semaphores, sockets,
handles and allocated memory before being unloaded.

7.2.3 Partitioning builtin modules
The initial port of Python to NetWare produced an NLM
that was 750Kbytes. This may be small compared to
Unix or Windows programs, but for an NLM that is very
large. Many standard builtin modules were not included
in this initial port.

Dynamically loading and linking to NLMs is possible,
but difficult. A good, standard solution is needed to
allow Python to dynamically import NLMs, as well as to
be dynamically imported by other NLMs.

7.2.4 UCS/UCX
Novell’s UCS (Universal Component System) may be
the solution to dynamic loading on NetWare. UCS cur-
rently supports Perl, NetBasic and Novell Enterprise
Web Server. It allows all of these components to use
resources and methods in other NLMs dynamically. The
proper solution to the Python importing dilemma may
be for Python to become a UCS component and client.

Unfortunately the UCS API is not yet available. I am
working to obtain access to the UCS specification.
When that information is available, I will be able to port
Python to NetWare and allow it to export functionality
to other applications, as well as being imported into
other NLMs.

8 References
• NDS Libraries for C Documentation-

http://developer.novell.com/ndk/docnds_c.htm
• NLM and NetWare Libraries for C Documentation-

http://developer.novell.com/ndk/doc_clib.htm
• Z Object Publishing Environment -

http://www.zope.org
• SWIG -

http://www.swig.org

9 Source Code
Please contact the author via email at
bkc@murkworks.comfor information about source code
availability.

http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/doc_clib.htm
http://developer.novell.com/ndk/doc_clib.htm
http://www.zope.org
http://www.swig.org
mailto:bkc@murkworks.com

	1 Introduction to Novell NetWare
	1.1 Server
	1.2 Clients

	2 Novell Directory Services
	2.1 Schema
	2.2 Objects

	3 Encapsulating NetWare APIs with SWIG
	3.1 SWIG Pseudo-Classes
	3.2 Conflicts with SWIG
	3.3 Extracting API info from .h files
	3.4 Using SWIG in Typemaps
	3.5 Automatic Exceptions, crashing Python
	3.6 Linking to NetWare DLLs, packaging

	4 Representing NDS with Python Classes
	4.1 Why Python
	4.2 NDS Objects
	4.3 Schema

	5 Using Python to access NDS from Zope
	5.1 External Procedures
	5.2 Tree View of NDS Objects
	5.3 NDS Schema Class Definitions

	6 Porting Python to NetWare as a NetWare Loadable Module
	6.1 Development environment and tools
	6.2 Messy Python config.h
	6.3 Socketmodule
	6.4 Threads

	7 Future Development
	7.1 NDS tools
	7.1.1 Schema builder
	7.1.2 Snap-in generator

	7.2 Porting Python to NetWare
	7.2.1 Memory management
	7.2.2 Module finalization
	7.2.3 Partitioning builtin modules
	7.2.4 UCS/UCX

	8 References
	9 Source Code

