NetWare Programming with Python

Brad Clements

MurkWorks, Inc.
bkc@ murkworks.com

Abstract to perform well, but errant NLMs can over-write mem-
: . . : ory and crash the system. NLMs must run within avail-
Accessing Novell Directory Services using Python) o

. . : able RAM. Virtual Memory capability was not made
classes is described. Using SWIG to encapsulate thgvailable until Netware 5.0 was released. in 1998
NDS APIs for use by Python is shown along with Python ' ’ '

classes developed to provide a more natural Python-likq\letware 3.0 ran in a minimum of 8 megabytes of RAM

eFoday‘s NetWare 5.0 recommends a minimum of 128

integration with Zope to provide an HTML interface to Meg of RAM, more depending on disk capacity. Early

Novell Directory Services is demonstrated. Finally, aNetWare versions were viewed as nothing more than a

port of Python to NetWare as an NLM and the associ_fast disk ch.anr}el with a disk cache strappgd on the side.
In the continuing server market race against Windows

ated porting difficulties are discussed. NT, customers demanded increased server-side func-
tionality and reliability.

and their application to this project are reviewed. NDS

1 Introduction to Novell NetWare

Novell NetWare was the first Intel x86 based file server To meet market demands, Novell added many features
to reach the market. Developed in the early 1980's, itto NetWare in an attempt to keep pace with competing
provided file sharing and printing services to 8086 products. Features such as Netscape Enterprise web
based PCs. Since those early days NetWare has grown server, BorderManager firewall, WAN routing, Xfree,
functionality and size, maintaining its lead in the x86 Java, and an X.500 style directory dubbed Novell Direc-
based server market. tory Services (NDS).

1.1 Server NDS is the central feature of this paper, and I'll touch on

With the introduction of NetWare 3.0, the file server it more later.
architecture moved to 32-bit processors with a multi-)
threaded operating system. Earlier versions of Netward-2 Clients
were ‘monolithic’ applications -- all functionality was Early releases of MS-DOS did not have any networking
built-in to a single executable. NetWare 3.0 introducedfunctionality. Novell distributed its own client software
the NLM (NetWare Loadable Module) that allowed fea- called a requester that allowed MS-DOS workstations to
tures to be loaded as needed. access NetWare file server resources. The protocol used
to communicate between the requester and the file
Architecturally, NLMs appear to be a cross between aserver is proprietary.
Windows 16-bit DLL and a Unix process. Typically
only one image of an NLM can be loaded in memory atHowever when Microsoft released Windows 95,
any given time, but an NLM image can be re-used by aMicrosoft also included it's own implementation of a
new executing process like a shared library. Global varitequester that allowed Windows 95 systems to access
ables are per-NLM, not per-process, making some portNetWare file servers. Microsoft had apparently reverse-
ing projects difficult. NLMs are written in C, with some engineered the proprietary client-server protocol.
limited C++ support.
Unfortunately only a subset of the existing NetWare
NetWare is a non-preemptive operating system where al\Pls had been implemented in the Microsoft requester.
NLMs run at ring-0 privilege level. This allows NetWare Novell continued to provide its own requester for Win-

dows 95, then Windows NT and Windows 98. Novell's 2.1 Schema

requester is the only way to access all of the NetWarerhe NDs Schema defines the structure of objects that
APIs, including Novell Directory Services functions. .4 pe stored in the directory tree. Objects are defined

. . by the following features:
Novell has made a limited set of APIs available for

Solaris, and Caldera’s Linux. NLMs also have access tq
the same APIs that are available to client systems using
Novell's requester.

Superclass - Acquires attributes from one or more
parent classes

« Naming - Defines how an NDS tree object is

. . uniguely named in the tree

2 Novell Directory Services « Containment - Regulates where objects can be cre-
When NetWare 4.10 was released, Novell included an ated within the tree

implementation of an X.500 directory service dubbed® Mandatory and Optional Attributes -

Novell Directory Services, or NDS. Like X.500, NDS ¢ Default Access Control List - defines access per-
allows a hierarchy of arbitrary objects to be represented ~ Missions to the NDS object and its attributes

in a tree-like structure. NDS objects are defined by their

Schema entry, that describes how the object is named®.2 Objects

its superclasses, mandatory and optional attributesan NDS object can represent a user or a resource, such
Figure 1 provides a pictorial representation of NDSas a file server, printer, disk volume, etc. Objects can be
from a design standpoint. created within the NDS tree subject to their containment
properties. For example, an Organization object can
contain other objects, such as Organizational Units,
Localities and Domains. An Organizational Unit can
contain Users, Servers and other Organizational Units,
but not Organizations. Figure 2 shows a sample direc-
tory tree with objects arranged in tree-like fashion.

Schema Directory
Components Components

Rules For

Directory o . . : - .
Tree Each object in the tree is uniquely identified by it's nam-

ing attributes, as specified in the schema. For example,
my User object is CN=BKC.OU=Engineer-
ing.O=MurkWorks

Objects

O=Novell
' Attributes

OU=Contractl OU=Contract2 OU=Contract3

I |_I_I I
Values

OU=Accounting OU=Engineering

Leaf Ohjects Leaf Ohjects

FIGURE 1. Novell Directory Services Architecture

FIGURE 2. NDS Objects are arranged in a tree-like
Since its initial release, Novell has continued to improve hierarchy.
and expand NDS'’s functionality, reliability and perfor-))
mance. Novell's marketing push has NDS functionality 3 Encapsulating NetWare APIs with SWIG

appearing in major software applications, routers, manThe Novell NetWare API set consists of thousands of
agement suites, databases, etc. functions, hundreds of structures and thousands of type-

defs. | chose to tackle the NetWare API by first concen-kind. These items must be allocated, are referenced by

trating on the NetWare Directory Services API subset. many functions, and must be explicitly freed when no
longer needed. Figure 4 shows three SWIG level

The NDS API has approximately 184 functions, 25+ “classes” developed to ease interfacing with the NDS

structures and 1047 typedefs or constants. The NDS APAPIs. These are not true classes, rather they are pseudo

is well thought out and ‘orthogonal’ -- that is, there is no classes defined using the SW#a8dmethodsperator.

overlap in functionality between individual APIs, and

the APIs fit together well, requiring no data transforms

between functions.

Because NLM development is difficult, | chose to target NWDSContext

Windows NT as the initial development platform, with [-context : ContextHandle

an eye for migrating to NetWare NLMs later. Because :N,\\llvveggggtneét%

. ~| X

the NLM environment does not support C++ code well, |, " getitem_ (self : _, index : int)

| chose to use SWIG rather than CXX as the means to [+__setitem__(self : _, index : int, value : any)

extend PythOﬂ +__getattr__ (self : _, name : any)

| compiled SWIG 1.1 (Build 685) using Borland C++ NDSCore_String

5.01 on Windows NT 4.0. The resulting SWIG produced [pat : char

.c file was also compiled with the Borland C++ Com- [+NDSCore_String(size : int = NDSCORE_STRING_LEN)
piler. Although Visual C was also available, using Bor- [*;NPSCore_string(

) . +Address() : long
land C throughout the project would allow for an easier |+ getslice_ (self : _, low : int, high : int) : PyObject *

port to NetWare as an NLM. e vas g . It seq s Pyblect™)
3.1 SWIG Pseudo-Classes NWDSBUf

One of the objectives of using Python to develop Net- TR

Ware applications was to simplify the interface to NDS. [ywossur)

The NDS API is designed to be used by C, Pascal and |*-NWDSBuf(

Visual Basic applications. It is strictly a procedural API

-- no objects or classes are used. Managing NDS objects riguURE 4. SWIG * classes’ease interfacing to NDS APIs

and the NDS schema involves allocatingantext han-

dlethat controls which Directory Tree is to be accessedfigure 5 shows the SWIGode used to create the

and where in the tree are we are operating. ¢bitext ~ NWDSBufpseudo-class. The pseudo-class includes a

handlemust be passed to all NDS functions. constructor that allocates a block of memory. If no argu-
ment was passed to the constructor,

When reading or writing object or schema class proper-DEFAULT _MESSAGE_LENs used as the memory

ties, aBuf_T structure must be allocated and passed thlock size, otherwise the value passed is used. The

the appropriate Read/Write functions. Binary data val-destructor frees the memory block allocated by the con-
ues are packed/unpacked to/from tBef T structure stryctor.

through a subset of the NDS API. For example, Figure 3
shows theNWDSPutAttrvafunction that adds an arbi- Using a pseudo-c|ass to represent a buffer allows me to

trary value to 8Buf_Tstructure. subclass NWDSBuf in Python and add NDS buffer
manipulation functions as methods of NWDSBuf. This
NWDSCCODE NWDSPutAttrVal(allows buffers to follow an object oriented model that is
NWDSContextHandle context, easier to use than the procedural NDS APIs. For exam-
pBuf_T buf, ple, the NWDSPutAttrValfunction shown in Figure 3
2;';"32 S;?rt\";‘::D’ could become a method of an NWDSBuUf object, elimi-
): nating the need focontextand buf to be passed to the
function.

FIGURE 3. Typical NDS function usescontextand Buf_T,
returns int result

Finally, a SWIGtypemaps used to coerce functions to
Both the context handleand theBuf_T structure lend accept aNWDSBufwherever gpBuf_Twould normally
themselves to being wrapped in a class structure of somige used. This is explained further in Section 3.4.

struct NWDSBuf {
pBuf_ T buf;
h

%addmethods NWDSBuf {
NWDSBu(int siz=DEFAULT_MESSAGE_LEN) {
[* constructor */
NWDSCCODE res;

struct NWDSBuf *me =

(struct NWDSBuUf *) malloc(sizeof(*me));
if(NULL me) {

PyErr_NoMemory();

return NULL,

}

me->buf = NULL;
if(siz > 0) {
res NWDSAIllocBuf(siz,&me->buf);
if(0 != res){ /* an error occured */
ThrowException(res,"NWDSAllocBuf",NULL);
free(me);
return NULL;
}
}

return me;

}

~NWDSBuf) {/* destructor */
if(self) {
if(self->buf)
NWDSFreeBuf(self->buf);
free(self);
}

}
}

FIGURE 5. SWIG code to create NWDSBuf Pseudo-Class

3.2 Conflicts with SWIG

The SWIGaddmethodsperator makes it easy to associ-
ate arbitrary ‘methods’ with data structures. | did
encounter a problem adding agetattr _method to the
NWDSContextlass.

Figure 6 shows the SWIG code used to addgetattr

to the NWDSContexpseudo class. | needed to provide
my own __getattr _implementation because | wanted
to treat index lookups and attribute lookups the same fo
this pseudo-class.

Unfortunately SWIG always generates its own
__getattr__implementation in the generated shadow

struct NWDSContext {
NWDSContextHandle Context;

h
%addmethods NWDSContext {

PyObject *__getattr__(char *attr);
}

Y%wrapper %({

PyObject *NWDSContext___getattr__(
struct NWDSContext *self,char *attr)

{ if(Istricmp(attr,"Context"))
return Py_BuildValue("l",self->Context);
else {
int which =
NWDSContext_Convert_Attribute Text(attr);
if(-1 == which) {
ThrowException(-1,
"NWDSContext__getattr__ ",
"Invalid attribute name");
return NULL;
}
return NWDSContext___getitem__(
self,Py_BuildValue("l",which));
}
}

FIGURE 6. Implementation of __getattr__causes conflicts
with shadow class

__getattr__method defined using theeddmethodsper-
ator.

I do not know of a work-around to this problem, other
than hand-editing the produced Python code to remove
the second getattr__.

def __ getattr__(self,arg0):
val = ndscorec.NWDSContext___getattr__(
self.this,arg0)
return val
<snip code removed>
def __ getattr__(self,name):
if name == "Context" :
return ndscorec.NWDSContext_Context_get(
self.this)
raise AttributeError,name

r

FIGURE 7. SWIG produced shadow class replicates
__getattr__

class. As a result, SWIG produces the Python code

shown in Figure 7, consequently conflicting with the

3.3 Extracting API info from .h files Buf, which is converted to a real pointer by the
SWIG was designed to accept existing .h files. The Net-SWIG_GetPtrfunction. After conversion, the NWDS-

Ware APIs defined in the .h files were designed to peBUf structure is dereferenced to obtain the actual
used on multiple operating systems and compilers. TdBUf_T value to pass to the NDS function.

accomplish this, Novell added several layersygfedefs _

and macros to the .h files. SWIG is unable to properly %typemap(python,in) pBuf_T {

process the .h files because it does not have a full pre- i (¥source) {
processor struct NWDSBuf *_temp;

if (SWIG_GetPtr(PyString_AS_STRING($source),
(void **) & temp," struct NWDSBuf_p")) {

The simplest solution | found was to copy the typedefs
PyErr_SetString(PyExc_TypeError,

and structures from each .h file and paste it into my own
SWIG .i file for processing as shown in Figure 8. The “Type error in argument.\
function definitions from each NetWare .h file were then Expected _struct NWDSBuf_p.");
copied to their own .i file using a parallel naming return NULL;

scheme.
$target = _temp->buf;

}

%module ndscore
%include "pointer.i" }

%{ %typemap(python,in) NWDSCONTEXT {

#include "nwdsdc.h" if ($source) {
<other required .h files > struct NWDSContext *_temp;
%} if (SWIG_GetPtr(PyString_AS_STRING($source),

(void **) & temp,"_struct_ NWDSContext_p")) {
PyErr_SetString(PyExc_TypeError,
"Type error in argument.\

%include "typemaps.i"

%init %f{
NWNetlnit(NULL,NULL); Expected _struct NWDSContext_p.");
/* initialize NDS libraries */ return NULL;

%} }

<all typedefs > $target = _temp->Context;
<all constants >

<all structures > }
<pseudo-class definitions for NWDSContext }
and friends >
<typemaps >
%include "nwdserr.h"
%include "nwdsdc.i"
%include “"nwdsmisc.i" . . .
%include "nwdsasa.i" 3.5 Automatic Exceptions, crashing Python
%include “nwdsacl.i All NDS APIs return an integer result coddWDSC-
.. < more .i files >
%wrapper .. CODE |nd|cat|ng success if zero. 3y gpplymg the
typemap shown irFigure 10 an exception is automati-
cally raised by the NDS APl whenever the result code is
non-zero. If the result code is zero, its value is not
returned because it is not needed.

%apply NWDSCONTEXT {NWDSContextHandle};

FIGURE 9. SWIG Typemap coerces pBuf_T and
NWDSContextHandle to use pseudo-class objects

FIGURE 8. General format of the master SWIG .i file

3.4 Using SWIGin Typemaps

SWIG typemaps are used to coerce the NDS API func-this is a very handy way of catching errors in the func-

tions to accept pseudo classes in place ottexiand tion or its arguments, but there are two problems using
pBuf_Targuments called for. Figure 9 shows the two thjs technique.

typemaps used fgyBuf_Tandcontext

» Functions that return values other than the return
In both cases, thia typemap operation is defined for the code caus®y_Noneo be incremented, but not
target variable type. For example, whep8uf_T is returned h
called for in the NDS API, we expect the user to pass & parameters passed by reference are not returned
NWDSBuf type. The SWIG produced shadow class \hen an exception is thrown
automatically passes a string “pointer” to the NWDS-

In the first case, originally | did not
Py INCREF(Py_None)in the exception processing
code, thinking that this would resolve the problem

When porting Python to NetWare as an NLM, the .c file
was compiled directly into Python as a built-in module
because dynamic binary module loading is not available

where Py _None would be incremented, but neveron NetWare yet.
returned. | wanted to avoid having a non-zero reference

count on Py None when Python exited. However |
found that when an NDS function was called that had
return type of void, Py_None was returned by the cod
shown in Figure 10.

Eventually Py_None would be DECREF'd to a negative
number, thereby causing an exception in my .DLL (and
crashing the NLM) whenever the NDS module was
unloaded.

4 Representing NDS with Python Classes

2The NDS API can be divided into two major sections:

Schema and Tree Objects. These two major categories
are each represented by their own Python module.

4.1 Why Python

To access Directory Services, the NDS API requires the
programmer to follow a complicated sequence of steps.
For example, to read the GUID attribute of an NDS User

| did not expect that decrementing the reference forobject:

Py_None to 0 would cause a fatal crash. Adding the
Py_INCREF(Py_None) to the code shown in Figure 10°
corrected the problem. A better solution needs to be
found to this problem. Perhaps rethinking my design, or®
adding functionality to SWIG to avoid the unnecessary*®

Create context handle

Allocate input and output buffers

Populate input buffer with desired attributgyid
Iteratively call NWDSRead, passing in context, tar-

Py_None increment.

Also, | suggest a change in Python 1.6 to not-crash if &

reference count goes negative on built-in statically allo-
cated values such as Py_None. Perhaps a simple war
ing could be printed instead.

%except(python) {
$function
if(PyErr_Occurred()) {

return NULL;

}

}
%typemap(python,out) NWDSCCODE {

if(0 !'= $source) {
ThrowException($source,"$name",NULL);
return NULL;

} else {
Py_INCREF(Py_None);
$target = Py_None;

}

}

FIGURE 10. Automatically throw exception if return code
non-zero.

3.6 Linking to NetWare DLLs, packaging

SWIG produces a .c file which is compiled by Borland
C into a DLL after linking with Novell supplied librar-
ies. The resulting .DLL can be loaded on any WIN32
workstation if that workstation is running Novell's
requester.

get object name, input and output buffer and itera-
tion handle

Iterate over output buffer, extracting attribute name,
syntaxld and values

If NWDSRead is aborted prematurely, free iteration
handle

Free buffers and context

Python naturally lends itself to a gross simplification of
this process, by reducing it to these steps:

M-

Create NWDSContext object

Retrieve NDSObject

Read the attribute

Using exceptions allows us to automatically release
buffers, context and iteration handle if desired. Addi-
tionally, the Pythonfor/in operator is a convenient
mechanism for iterating over the objects of an NDS Tree
through the use of an xrange-like NDSTreelterator
object.

4.2 NDS Objects

Two Python classes are used to access NDS Tree
Objects, as shown in Figure 11. ANDSTreeObject
encapsulates all of the NDS APIs that are used to access
NDS Obijects and their properties. TR STreelterator
object is used to iterate through the subobjects of an
NDS Tree object, for example, all the objects in the root
Organization.

The NDSTreeObject.__repr__ method returns the NDS
distinguished name of the object.

NDSTreelterator

-DN : char

-context : NWDSContext
-opType : int
-iterationHandle : long
-nextitemindex : int

+__init__(self : -, context : NWDSContext, DN : char * = ™)
+__del__(self:)

+_GetNextltem(self : _)

+List(self : _)

+__getitem__(self : _, index : int) : NDSTreeObject

*« NDSAttributeContainer - Caches NDSAttribute

objects

« NDSSchema - A factory class for NDSSchema-

ClassObject and contains a reference to an NDSAt-
tributeContainer.

from NDSSchema import *

>>> ¢ = NWDSContext()

>>> factory = NDSSchema(c)

>>> for cl in factory.keys() :

. print cl, factory[cl].superClassNames

] Application (Windows 95) ['Application’, 'Top']

NDSTreeObject Computer ['Device', 'TOp']
DN : char App:Folders [Top']
-readAllKeys : boolean = ; ; Doli "o ;
;Z?anfjﬁzble"%zz{‘: FASE Container Policy ['Policy Type', 'Top']
-context : NWDSContext (more)
-syntaxDict : dict
atirvalues : dict __ FIGURE 13. Iterating over NDS Schema Class objects to
:_lrgl:)r_(?zleflf: :_._)context: NWDSContext, DN : char * =", loadOptions : int = -1) dlsplay their superclasses
Igen?gi'ﬁ?aﬁi(éilffﬂj';isééolis[’ toGet : int = DS_ATTRIBUTE_NAMES, readNothing : bool = FALSE) Figure 13 ShOWS hOW the NDSSchema object iS used to
" sJettom (sef . ndex: chan) iterate over all defined Schema Classes and display their
+List(self : _, targetDN : char * = None) : NDSTreelterator superClaSSNameS_ The\] DSSChema_keys(fu nction

returns a list of Schema Class Names. THBSS-
hema.__getitem_function is used to return aNDSS-
‘hemaClassObjectwhich in turn references its
superClassNamestribute.

FIGURE 11. NDS Object Python Classes
Figure 12 shows how the NDSObiject classes are use
An NDSContextobject is created and its settings are
changed to reference the tr@estTree with a default
naming context oMyCompanyThe root of the tree is .
obtained and it'sSUID attribute is retrieved. Finally, all 5 Using Python to access NDS from Zope

leaves of the root are listed using tNSTreelterator “Zope” is an acronym for “Z Object Publishing Envi-

created through thDSObject.Lig) function. ronment.” In Zope, web pages are built by adding
“objects” and modifying object “properties”. Several

from NDSObject import * built-in objects like Folders, Documents, and Images are

>>> ¢ = NWDSContext() included in the software and are combined together to

>>> c[DCK_TREE_NAME] = "TestTree"
>>> c[DCK_NAME_CONTEXT] = "MyCompany"
>>> obj = NDSTreeObject(c,")

produce a completed web site.

>>> obj[GUID] 5.1 External Procedures

1\000\234k\274214\014\..." Zope allows externally defined Python code to be exe-

>>> for leaf in obj.List() : cuted within the context of a Web request. ThEsger-

- print leaf nal Proceduresnay in-turn load other Python modules.

'CN=DNSDHCP-GROUP" | added functionality from the NDSSchema and

'CN=SMS SMDR Group' NDSObject Python classes to Zope through a few sim-

'CN=PIT' ple external procedures.

'CN=PIT Backup Queue'

CNanommous 5.2 Tree View of NDS Objects

'CN=bkc' One of the most common NDS operations is browsing

(more) NDS Tree Objects and their properties. Using the
FIGURE 12. Iterating over NDS Tree objects using the NDSTreelterator object in conjunction with the Zope

NDSTreelterator object o . .
#treeDHTML tag, it is easy to create a tree-like hierar-

4. hem chical Iist.ing of NDS Objepts as shown ip Figure 15.
3 Schema The left side of the frame displays NDS objects. Select-

Four Python classes are used to access the NDS Sche% an Object updates the right side of the display to
APIs as shown in Figure 14. The four classes include: ¢p o the Object properties and attributes.

* NDSSchemaClassObject - Represents a Schema 14 create the object display, the NDSTreelterator object

class . , . was used to generate a hierarchal list of objects in a for-
+ NDSAttribute - Holds the properties of an attribute ot usable by the Zopétree tag. When a object is

NDSAttributeContainer
NDSSchema
-context : NWDSContext
-context : NWDSContext -attrDict : dict
-classDict : dict -gotAllAttrs : bool
-Attributes : NDSAttributeContainer| +__init__(self:)
-gotAliNames : bool = false +__getitem__(self : _, index : int)
+__getitem__(self : _, index : char) +keys(self : _) : dict
+keys(self :) : list +_readDef(self : _, attrList : list, toGet : int = DS_ATTR_DEFS)
1..n |+_extractAttrDefinition(self : _, outbuf : NWDSBUf, toGet : int)
1.n
NDSAttribute
-Name : char
-syntaxID : int
-flags : int
-asnliD : oid
-lower : int
-upper : int
+__repr__(self:_): char*

NDSSchemacClassObject

-className : char

-context : NWDSContext

-mandatoryAttributes : list

-optionalAttributes : list

-namingAttributes : list

-containmentClassNames : list

-superClassNames : list

-Attributes : NDSAttributeContainer

+__init__(self : _, context : NWDSContext, ClassName : char *, loadOptions : int, Attributes : NDSAttributeContainer, SchemaFactory : NDSSchema),
+keys(self : _) : list

+__getitem__(self: _, index : char) : NDSAttribute

+_repr__(self:_):char*

+_readDef(self : _, toGet : int = DS_EXPANDED_CLASS_DEFS, SchemaFactory : NDSSchema = None)
+_extractClassDefinition(self : _, outBuf : NWDSBUf, toGet : int, SchemaFactory : NDSSchema = None)

FIGURE 14. NDS Schema Python Classes
selected, the referenced object is retrieved via arb,.3 NDS Schema Class Definitions
NDSTreeObject object. The objects attributes and valgjmijarly, NDS Schema Class definitions can be dis-
ues are then displayed in the right-hand frame. played using a tree-like hierarchy as shown in Figure 16.
The left side displays Schema Classes, as they are
derived from their respective SuperClasses.

NDS Objects] CN=bk
= ® roon) TR . .
Donnstey Selecting a Schema Class in the left-hand frame causes
CN=DMSDHCP-GROUP [([All Attributes Rights], 'CN=bke', 2), (Login Script!, 'CN=bkc', 6), (Me . . .
DL Coulog I | ey ool 2, (Bsn Job Confguaion. ‘Ch=bke’ 0), (Network Address. the right-hand frame to display Schema Class attributes,
=] oup - [Reot], 3)] . . 3
DO S I | ccomt gy including the Class’s flags, superClassNames, manda-
Do || et 1 tory and optional attributes.
4 CN=PIT BROKER Credit
CN=FIT N551 CN B ['bke', "The captain of the ship', ‘The guy who rvincd the company'] |)))
CNiiiSii,m iﬁlhu e e In this example, theNDSSchema.keys(unction is
P vl called sequentially to return a list of classes whose only
2 Clima ‘elephone -268-! L0, e6f_pnuint? H “ ” 1
:7%55’“; N parent class is “top”. Subsequnetly expanding one of
OMshpenpcz || CTD e om these classes returns a list of classes whose parent class
g’mmw g;_‘::m (0, 'CIN=PIT_NSST', usritbke') iS the Selected CIa.SS.
HNLS Publisher=NoveltNL.5:Pr TInitials ’ K
j@Com SCIANLE Versien=50 I8 304 Peyton Hall
Language [English'] H
e P 6 Porting Python to NetWare as a NetWare
4 — | « Loadable Module

FIGURE 15. Zope Tree Hierarchy shows NDS Objects and

their attributes As previously mentioned, Novell NetWare is based on a

32-bit non-preemptive, multi-threaded operating system
where all processes execute at ring-0. With virtual mem-
ory only recently becoming available, NLMs must be

6.2 Messy Python config.h

O Lok " 1 Python attempts to use a singlenfig.hfile to set com-

°E Organizational Unit

User
Poiass Fiags S pile-time and run-time options. Unfortunately the
- o5 mmmmoTIE cuass Python distribution assumes that the compiler make
- _ establishes the target run-time system.

Superclass Names
Security
8 SLP Directory Agent "

b T For example, the suppliedonfig.h assumes that if
i __BORLANDC __is defined, then Python is being com-

piled for 16-bit DOS.

Naming Attributes

£392 °F R

H A 5!

5 iR
‘.
Lo
% o
2

| think the best solution to theonfig.h problem is to

*2) applicationProcess

ety - Qummton make a distinction between the compiler and the target
certification Authority + Organizational Unit . : -
D aclea - operating system. Rather than automatically setting run-
DusomPrenes - S time features based on the compiler type, a two level
Dt . pr P YT A Ty #ifdefis needed.
FIGURE 16. Zope Tree Hierarchy navigates Schema Class F'na!ly’ the _ta'l enq OfCOI’lfIg_.h has many opt|onal
Definitions #defines setting various run-time options, but these
carefully constructed to run successfully in this environ-ogptions must be enabled by hand editing trenfig.h
ment. file. A two level config.hshould address this problem as

well.
The ultimate goal of my project is to port Python 1.5.2

and Zope to NetWare, capitalizing on the built-in Oracleg 3 Socketmodule

8 server, Netscape Enterprise Server and Netwar%sing config.his a good idea for centralizing all com-

Directory Services functionality. Unfortunately the ile-time and run-time obtions. Unfortunately other
design of the NetWare operating system is nothing like? P) y

. . . modules sneak in their owsiifdef morass rather than
the Unix and Windows systems to which Python hasus:in config.h The socketmodule is an example of such
already been ported. NLMs are loaded into a global 9 9 P

namespace -- exported symbol names must be uniqud module, and worse, it uses a confusing array of nested
P P Y 9itdefsto control compile time options. For example:
across all NLMs, etc.

, #ifdef __BEOS__
Each NLM can only be loaded once unless extraordi- piock = 1block:

nary measures are taken. When NLMs are unloaded, setsockopt(s->sock_fd, SOL_SOCKET,
they must release all of their allocated memory andSO_NONBLOCK,

semaphores, otherwise the NetWare server may abend. (void *)(&block), sizeof(int));
Although NL'Ms can simulate the functionality of . MS_ WINDOWS

shared libraries and DLLs, there is no concept of periet pyos os2

process private memory, making inter-process and inter- plock = Iblock;

NLM data corruption a strong possibility. ioctl(s->sock_fd, FIONBIO, (caddr_t)&block,
sizeof(block));
. #else /* IPYOS_OS2 */
6.1 Development environment and tools delay flag = fontl (s->sock fd, F GETFL, 0);
When porting Python to NetWare, | used Borland C++ if (block)
5.01 with Base Technology’s NLINK Pro. Novell sup- ~ delay_flag &= (~O_NDELAY);

. . . : . . - else
plies .h files and import libraries for use with this and delay flag |= O_NDELAY:

other compilers, including Watcom and Metrowerks, fcny (s->sock fd, F_SETFL, delay flag):
and Microsoft Visual C. #endif /* IPYOS_0S2 */

#else /* MS_WINDOWS */
NLMs are compiled on a Windows NT workstation, block = tblock;
then copied to the target NetWare server for execution(u'olgtrliﬁ)C gsltéz'ljf()Ck—fd’ FIONBIO,
Debugging is achieved using a very crude assemblelangit /+ MS WINDOWS */
interface built in to the NetWare operating system. #endif /* __BEOS__ */

The above code is a small example of hiéifidefuse can ulate NDS Directory Objects and Schema Classes with-
get out of hand if not carefully used. My suggestion for out mind-numbing repetition of hand written code.

future Python versions is to not use nestéfilefs but

rather something like the following: 7.1.1 Schema builder

By combining the NDS Python classes with Zope, an

#undef CODE_COVERED NDS Schema Class builder can be realized. The Schema

#f _ BEOS__ && !defined(CODE_COVERED)

do BEOS specific builder allows the developer to automatically generate C
#define CODE_COVERED code for creating an NDS Schema Class by selecting the
#endif SuperClass(s), mandatory and optional attributes

#f __NLM__ && !defined(CODE_COVERED)

do NLM specific through an HTML interface generated by Zope.

#endif

#ifndef CODE_COVERED New Schema attributes can be created and retained in
#error no code for this section the Schema Builder through the use of a Z&f@lass
#endif object. Finally, DHTML methods generate the appropri-

The above code allows additional platforms to be easilyate C code for inclusion in server-side or client-side
supported because it is very clear where the new codapplications.
should be inserted.

7.1.2 Snap-in generator

6.4 Threads Snhap-Ins are Windows DLLs that enable NWAdmin (the

The initial NetWare port of Python did not have threadsNetWare Directory Services Management tool) to cre-

enabled. NetWare supports three types of threadsate, display and manage custom directory objects. Snap-

worker threads, threadgroups and regular threaddn development is very difficult and time consuming.

Worker threads have no context and are used by the

operating system. Threadgroups have their own contexrhe Schema Class Builder can be expanded to automati-

such asconnection, logged in user, screeRegular cally generate basic NWAdmin Snap-In source code.

threads are sub-threads of a parent thread group. Using a template system and layout manager, a simple
Windows Dialog with multi-edit page tabs can be pro-

The threading module will likely produce regular duced.

threads, but developers may wish to create new thread-

group threads to enable Python scripts to execute ag.2 Porting Python to NetWare

multiple logged in users. More thought in this area iSThe initial port of Python 1.5.2b1 to NetWare proved

needed. that Python could be made to operate in the NetWare
server environment. To be completely useful, several

7 Future Development major improvements need to be made to the program.

The NetWare Programming with Pythgoject has two

major goals, creating client-side NDS development tools7.2.1 Memory management

and applications, and porting Python to NetWare as an\| pyilt-in and dynamically loaded binary modules

NLM. must be able to gracefully recover from, or properly
handle, a failed memory allocation. To pass Novell cer-
7.1 NDS tools tification, the Python NLM must not crash, corrupt or
Python based client-side NDS tools promise to allowabend the file server when a memory allocation fails.
developers to investigate the NDS API without suffering
through an exhaustive edit-compile-test cycle. NDSAIthough most users will probably load Python in a
APIs can be exercised interactively. Python allows NDSring-3 process to obtain access to virtual memory, older
Objects and Schema Classes to be represented in aersions of NetWare do not have this functionality.
easy-to-understand object oriented fashion. This allow$ython must properly free ALL allocated memory,
programmers to develop program concepts around NDSockets and other resources before it is unloaded.
without getting bogged down in the difficult details of
NDS APIs. 7.2.2 Module finalization

To properly release allocated resources, module finaliza-

Additionally, Python can be used as a code generator ~tion must be added to Python. A builtin or dynamically

automatically producing the necessary C code to manip-

loaded binary must be able to free semaphores, sockets,
handles and allocated memaory before being unloaded.

7.2.3 Partitioning builtin modules

The initial port of Python to NetWare produced an NLM
that was 750Kbytes. This may be small compared to
Unix or Windows programs, but for an NLM that is very
large. Many standard builtin modules were not included
in this initial port.

Dynamically loading and linking to NLMs is possible,
but difficult. A good, standard solution is needed to
allow Python to dynamically import NLMs, as well as to
be dynamically imported by other NLMs.

7.2.4 UCS/UCX

Novell’'s UCS (Universal Component System) may be
the solution to dynamic loading on NetWare. UCS cur-
rently supports Perl, NetBasic and Novell Enterprise
Web Server. It allows all of these components to use
resources and methods in other NLMs dynamically. The
proper solution to the Python importing dilemma may
be for Python to become a UCS component and client.

Unfortunately the UCS API is not yet available. | am
working to obtain access to the UCS specification.
When that information is available, | will be able to port
Python to NetWare and allow it to export functionality
to other applications, as well as being imported into
other NLMs.

8 References

* NDS Libraries for C Documentation
http://developer.novell.com/ndk/docnds_c.htm

* NLM and NetWare Libraries for C Documentation
http://developer.novell.com/ndk/doc_clib.htm

e Z Object Publishing Environment -
http://www.zope.org

e SWIG-
http://www.swig.org

9 Source Code

Please contact the author via email at
bkc@murkworks.corfor information about source code
availability.

http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/docnds_c.htm
http://developer.novell.com/ndk/doc_clib.htm
http://developer.novell.com/ndk/doc_clib.htm
http://www.zope.org
http://www.swig.org
mailto:bkc@murkworks.com

	1 Introduction to Novell NetWare
	1.1 Server
	1.2 Clients

	2 Novell Directory Services
	2.1 Schema
	2.2 Objects

	3 Encapsulating NetWare APIs with SWIG
	3.1 SWIG Pseudo-Classes
	3.2 Conflicts with SWIG
	3.3 Extracting API info from .h files
	3.4 Using SWIG in Typemaps
	3.5 Automatic Exceptions, crashing Python
	3.6 Linking to NetWare DLLs, packaging

	4 Representing NDS with Python Classes
	4.1 Why Python
	4.2 NDS Objects
	4.3 Schema

	5 Using Python to access NDS from Zope
	5.1 External Procedures
	5.2 Tree View of NDS Objects
	5.3 NDS Schema Class Definitions

	6 Porting Python to NetWare as a NetWare Loadable Module
	6.1 Development environment and tools
	6.2 Messy Python config.h
	6.3 Socketmodule
	6.4 Threads

	7 Future Development
	7.1 NDS tools
	7.1.1 Schema builder
	7.1.2 Snap-in generator

	7.2 Porting Python to NetWare
	7.2.1 Memory management
	7.2.2 Module finalization
	7.2.3 Partitioning builtin modules
	7.2.4 UCS/UCX

	8 References
	9 Source Code

