
Aggressive Type Inference

John Aycock

Department of Computer Science

University of Victoria

Victoria, B.C., Canada

aycock@csc.uvic.ca

Abstract

Python is a \dynamically typed" language because,

in general, the type of any variable is not known

de�nitively until run-time. This feature is known to

be a major limiting factor in optimization of Python

code, and is typically addressed by calls for optional

static typing to be added to Python. In this paper I

describe an application for type inference unrelated

to optimization, and present a new method for di-

vining type information | aggressive type inference

| which determines the types of variables in the ab-

sence of explicit cues. An empirical study of Python

programs suggests that this might be a reasonable

approach.

1 Introduction

In talking with people at last year's Python Confer-

ence (IPC7), I mentioned the possibility of writing a

Python compiler. . . in Python. Not content to stop

there, I suggested that the idea could be taken fur-

ther, to translate Python code into Perl [29].

The idea of a Python-to-Perl translator has some

merit. In fact, many of the arguments in favor of

JPython [11] apply, particularly the ability to lever-

age Perl development. (And supply an alternative

for Python programmers who are forced to work ex-

clusively with Perl!)

Internally, both Python and Perl compile pro-

grams into code for a language-speci�c virtual ma-

chine (VM). This gives four avenues by which

Python code may be translated into Perl, shown as

dashed arrows in Figure 1. Some avenues are more

promising than others, though. Both languages'

VMs are fully speci�ed in terms of concrete oper-

ational semantics [27], a polite way of saying that

their details are buried in source code and subject

to change. A translation involving either VM would

result in unreadable and unmaintainable code.

Python
Code

Python
VM Code

Perl
Code

Perl
VM Code

Figure 1: Python to Perl translation.

a = 123

b = [a, 456]

c = {'yyj': a}

print a,

$a = 123;

@b = ($a, 456);

%c = ('yyj' => $a);

print $a;

Figure 2: Translation example.

In contrast, a source-to-source translator would be

ideal. Figure 2 shows a possible Perl translation for

a snippet of Python code.

What does this have to do with type inference?

The translated Perl code must have the $@%&* type

speci�ers on all Perl variables. This tells Perl, for in-

stance, that a variable is scalar (string, number), an

array, or a hash. Determining this type information

is the task of type inference.

2 Type Inference

The process of inferring variables' types by looking

at how they are used is called type inference.

Type inference has a long tradition in functional

def foo(x):

print x # S1

if x:

x = 123 # S2

else:

x = 'abc' # S3

print x # S4

Figure 3: Dynamic typing in action.

languages. Hindley[9] and Milner [19] independently

discovered a method for inferring types at compile-

time. Its most widely-known incarnation is in the

language ML [18].

Type inference in functional languages is, in turn,

based on work in the early 1960s on automatic the-

orem provers. In particular, Robinson [21] gave an

algorithm for unifying logical expressions which was

used later by Hindley and Milner for inferring types.

Algol-family languages [25], by comparison, have

relied primarily on explicit type information sup-

plied by the programmer, although there have been

some attempts to the contrary [10].

These type inference systems are conservative in

the sense that, given a variable X , they will always

compute a superset of X 's type [1].

3 Aggressive Type Inference

Python is a dynamically-typed language, meaning

that the exact types of variables are not known un-

til the program is run. In Figure 3, x is clearly an

integer if S2 is executed, or a string if S3 is exe-

cuted. And at S4? The exact type of x at S4 is in-

determinate at compile-time, unless we know which

part of the if-statement will be taken at run-time.

In this case, that requires knowledge of x's value,

which cannot generally be known at compile-time.

Even more problematic is the type of x at S1. If

the program were to be analyzed in its entirety |

whole-program analysis | we could attempt to lo-

cate all calls to foo and see what the possible types

of x may be. This is a nontrivial task in itself.

Code like foo(17) is easy to locate; discovering that

apply(functions[y+random()], (17,)) calls foo

is undecidable.

The �nal complication is that Python, like many

other scripting and functional languages, allows new

code to be generated and executed at run-time. In

the case of Python, this can be done directly with

the exec statement, or more surreptitiously by cre-

ating a .py �le on-the-y and importing it. Type

information arising in this way is unobtainable at

compile-time.

These problems are not unique to Python, and are

known to implementors of other dynamically-typed

programming languages. Work on Tcl compilers, for

example, has universally noted the diÆculty of type

inference [14, 22, 23]. (The bene�ts are equally well

known. Type information has been characterized

as being critical to the eÆcient implementation of

Smalltalk [13], SELF [5], and APL [17].)

How can types of Python variables be determined

at compile-time? All proposed solutions to date in-

volve (optional) static typing, which requires the

programmer to explicitly insert type information.

Variations on this theme include [16, 20] and innu-

merable discussions on comp.lang.python and the

Python Types-SIG.

I have taken a di�erent approach with the idea of

aggressive type inference (ATI). The key idea under-

lying ATI is this:

Giving people a dynamically-typed language

does not mean that they write dynamically-

typed programs.

In other words, just because Python permits pro-

grammers to write code like that in Figure 3 doesn't

mean that code like it is written frequently. A simi-

lar conjecture1 about usage of Tcl variables is made

in [14]; empirical evidence for this \type consis-

tency" is presented in [28], where they found about

80% of operators in a large sample of Icon programs

maintained the same type.

ATI works according to two rules:

1. Flow-insensitivity. This is a concept from data

ow analysis. To quote Cooper and Kennedy [6,

page 247],

`Flow insensitive information de-

scribes data ow events which occur

on at least one path through a proce-

dure. . . By contrast, ow sensitive in-

formation describes data ow events

which occur on every path through a

procedure.'

E�ectively this means that control ow is ig-

nored. Applying this rule to Figure 3, ATI

would decide that x has the type string [

number at S2, S3, and S4.

1Unfortunately, uncon�rmed as of this writing [15].

class c:

def set(self, o):

self.o = o

def get(self):

return self.o

Figure 4: Inference in isolation indeterminate.

2. Type consistency within a scope. This second

rule addresses the problem of determining x's

type at S1. If a variable has a type T during

its lifetime, then it has type T at every point

within the scope in which it is bound to a value.

In Figure 3, ATI infers x's type at S1 to be

string [number, because x has that type later

in the function. Furthermore, ATI has reached

this conclusion without having to look beyond

the code for foo.

An analogy can be drawn between this second

rule and the scope rules in Pascal [12], where an

identi�er's scope is the entire block in which it

is declared, not just from the declaration point

onwards.

ATI has apparently resulted in some rather useless

type information: no single distinct type for x has

been arrived at! Now, suppose that a restriction is

placed on Python programs. For a program to be

used with ATI, it must be written in such a way

that ATI can infer an exact type for all variables.

Otherwise, a compile-time error will result. Figure 3

is an invalid program according to this restriction.

Of course, all Python programs do not adhere to

this restriction, nor should they. This restriction is

certainly acceptable for my Python-to-Perl applica-

tion, though. It is in keeping with proposed \high

speed" implementations of a Python subset, such as

Swallow [7] and Viper [24]. And it is a similar restric-

tion to that which optional static typing requires.

The above two ATI rules alone are insuÆcient to

infer types for some programs. In Figure 4, looking

at c.set() or c.get() in isolation does not allow

any type inferences to be made. ATI can be used in

conjunction with other sources of type information,

as I describe in the next section.

4 ATI Implementation

I have developed a proof-of-concept implementation

of ATI. Approximately 1200 lines of Python code, it

operates in two phases (Figure 5):

Summarizing
(Phase 1)

Type
Inference
(Phase 2)

input.py

builtins.i

Imported .i
Files

Summary
Information

Figure 5: ATI Phases.

1. The input Python program is scanned and

parsed. (No semantic checks are performed;

the input is assumed to be correct.) All in-

formation relevant to ATI is distilled into sum-

mary information and saved into a �le with a

.i suÆx. For example, if the code in Figure 4

resided in blarg.py, then its summary informa-

tion would be written to blarg.i, whose con-

tents are shown in Figure 6.

All information about control ow, such as

branches and loops, is discarded. Information

that is kept includes:

(a) The scope of classes, methods, and func-

tions (scope).

(b) Variable assignments (assign).

(c) Operations on variables (op).

(d) Method/function return types (return).

(e) The types of names (type).

(f) Equivalences between names (equ). In

Figure 6, for example, it is noted that

the zeroth parameter to set is an alias for

set's local variable self.

(g) Import statements (import| not shown).

type c is class

scope c begin

equ set.#1 = set.o

equ set.#0 = set.self

type set is func

scope set begin

assign #t4 = o

equ self = #t3

op #t4 is #t3 . o

scope set end

equ get.#0 = get.self

type get is func

scope get begin

return #t2

equ self = #t1

op #t2 is #t1 . o

scope get end

scope c end

Figure 6: Summary information (reformatted for

legibility).

(h) Global declarations (global | not

shown).

2. The summary information is repeatedly exam-

ined in order to propagate type information.

For example, given the summary information

assign x = y

assign y = #t1

type #t1 is string

ATI would discover on the �rst pass that there

are three names: x, y, and #t1 (a temporary

name generated by phase 1). It would also note

that #t1 has the type string. On the second

pass, ATI would �nd that y has the type string

too. Finally, ATI would conclude on the third

pass that x is a string. (This process can be

made much more eÆcient!)

The names of imported modules appear in a

�le's summary information. When this is en-

countered in phase 2, an attempt is made to

read a .i �le for the imported module. It is not

an error if such a �le is missing: in this way, ATI

can be given either partial or whole-program in-

formation, as appropriate.

As a general rule, ATI will be more e�ective the

more information it is given. Taking the code

from Figure 4 as input, my ATI implementa-

tion only decides that c is a class, self is an

class c:

def set(self, o):

self.o = o

def get(self):

return self.o

x = c()

x.set(123)

y = x.get()

Figure 7: More information, better inference.

def abs(N):

N = 123

return 123

def dir(object=None):

return ['abc']

def range(a1, a2=123, a3=123):

return [123]

Figure 8: Some built-in function de�nitions.

instance, and set/get are methods. But given

the few extra lines of input highlighted in Fig-

ure 7, the correct types of all names in the input

are inferred:

c class

c.set method

c.get method

c.set.self instance

c.get.self instance

c.set.self.o number

c.get.self.o number

x instance

y number

Type information for Python's built-in func-

tions is automatically imported from the �le

builtins.i. An excerpt from its source �le is

shown in Figure 8; these functions are de�ned

skeletally because only type information is re-

quired.

Both phases use the little language framework de-

scribed in [2]. I am currently reworking the ATI im-

plementation to overcome some design limitations

in Phase 2. In particular, inference involving lists

is incomplete, making full analysis of real programs

troublesome.

5 On Being Wrong

ATI may arrive at a solution which appears to dis-

cover types for all variables, yet is incomplete in the

sense that all possible types for variables have not

been found. Furthermore, it is not generally possi-

ble to detect this situation. Consider the following

cases:

1. Only partial information is given to ATI. In this

case, ATI can obviously miss vital information.

2. Code is generated at run-time. Since ATI is

done at compile-time, it cannot be privy to run-

time information. This may be mitigated to

some extent by warning about uses of the exec

statement, and imported modules for which no

information is available at compile-time.

3. The call graph is obscured. By this I mean code

where the ow of control is unclear. For ex-

ample, function calls made through an array of

function pointers, or a class which dynamically

changes its superclass.

In these situations, the \aggressive" nature of ATI

comes into play. I assume that even though cases

such as the above are possible, that they occur in-

frequently and thus may be ignored.

6 Applicability

It is a rather bold claim to say that Python pro-

grams, overall, are not especially dynamic. I have

done some static and dynamic analysis of programs

which suggest that there is some truth to this claim.

(Only the results are presented here; the details of

the analyses are deferred to the Appendix.)

Seven bodies of Python code were chosen for this

survey, a total of 51,300 lines of code (LOC):

1. Idle 0.4, a graphical user interface for Python

development bundled with the Python 1.5.2 dis-

tribution.

2. Gady 1.0, a relational database system [30].

3. Grail 0.6, an Internet browser [4].

4. HTMLgen 2.2, a generator of HTML docu-

ments [8].

5. J--, a compiler for a subset of Java.

6. Lib, the Python 1.5.2 library (sans subdirecto-

ries).

7. Pystone 1.1, a Dhrystone benchmark included

in the Python 1.5.2 distribution.

The code was statically analyzed for indications of

code being dynamically generated and executed: the

exec statement, and uses of eval(), execfile(),

and import (). (These are cases where ATI will

fail.) The results are shown in Table 1, broken down

by individual constructs in addition to being taken

as a total percentage of lines of code. 2

Not surprisingly, the static occurrence of these

four constructs is highest in Python's library code,

where esoteric code would be expected. But even in

the library, the frequency of these constructs is in-

signi�cant when compared to the number of lines of

code. However, as the Python library code is clearly

atypical, and it is not obvious how to fairly test such

disparate components, I excluded it from further di-

rect analysis.

For dynamic analysis, each package was run us-

ing an instrumented Python interpreter. This inter-

preter counted the dynamic occurrence of the same

four constructs and the number of Python VM in-

structions executed. These results are shown in Ta-

ble 2. Again, the results suggest that dynamic code

generation facilities in Python are not heavily used.

Having few impediments to compile-time analysis

of Python code is important; for ATI, having vari-

ables that don't change from one type to another

is even more important. Using the instrumented in-

terpreter again, I tracked VM instructions that store

values to local and global variables, classifying each

instruction's e�ect on a variable's type into one of

three categories:

1. TNULL ! TX . No change of type, because the

variable has no prior value (this happens when

a variable hasn't been assigned to previously, or

has been deleted with del).

2. TX ! TX . No change of type resulted.

3. TX ! TY . A change of type resulted.

Table 3 shows the results of this experiment. Ob-

viously, the vast majority of VM store instructions

do not result in a type change. This raises several

questions.

Are TX ! TY localized? In other words, are type

changes made throughout the program, or are they

con�ned to small portions of code? Table 4 shows

that there are only a few culprits. (Roughly speak-

ing, frame objects correspond to function/method

2The eval() number for Gady was determined by manual

inspection, for reasons discussed in the Appendix.

exec eval execfile import LOC % of LOC

Idle 1 0 1 1 4449 0.07

Gady 0 2 0 1 10200 0.03

Grail 4 2 0 0 6419 0.09

HTMLgen 0 4 1 2 4794 0.2

J-- 0 0 0 0 1498 0.0

Lib 11 23 2 12 23754 0.2

Pystone 0 0 0 0 186 0.0

Table 1: Static occurrence of dynamic constructs.

exec eval execfile import Instructions % of Instructions

Idle 1 0 0 12 346617 0.004

Gady 0 47 0 0 7957055 0.0005

Grail 214 6 0 0 4676698 0.005

HTMLgen 0 831 10 0 422496 0.2

J-- 0 0 0 0 8096543 0.0

Pystone 0 0 0 0 6702077 0.0

Table 2: Dynamic occurrence of dynamic constructs.

TX ! TY (as

TNULL ! TX TX ! TX TX ! TY Stores % of Stores)

Idle 12462 8827 1633 22922 7.1

Gady 482644 185353 7444 675441 1.1

Grail 107154 99651 8410 215215 3.9

HTMLgen 10755 11351 835 22941 3.6

J-- 67475 1238553 1820 1307848 0.1

Pystone 220247 290005 7 510259 0.001

Table 3: Dynamic type consistency from VM store instructions.

Frame Objects Code Objects

Total TX ! TY % Total TX ! TY %

Idle 6705 1285 19.2 369 28 7.6

Gady 164196 3261 2.0 792 61 7.7

Grail 78413 7472 9.5 1252 124 9.9

HTMLgen 11594 795 6.9 579 24 4.1

J-- 50174 1814 3.6 284 11 3.9

Pystone 170106 6 0.004 61 6 9.8

Table 4: Localization of type changes.

Total Local Locals with % with

Variables > 1 Type > 1 Type

Idle 1801 20 1.1

Gady 3143 150 4.8

Grail 4668 91 1.9

HTMLgen 1581 15 0.9

J-- 801 2 0.2

Pystone 264 0 0.0

Table 5: Dynamic type consistency of local vari-

ables.

invocations, and code objects correspond to func-

tions/methods in the program text.)

What does this mean in terms of real variables?

The data in Table 3 does not tell the whole story in

terms of variables in the program text. For example,

the code

x = 123

del x

x = 'abc'

would appear as two TNULL ! TX stores, rather

than a TX ! TY . Another extreme case would be

where every variable's type is changed once, then

remains constant thereafter. Since ATI is dependent

on the type consistency of variables in the program

text, I used the same dynamic data to reconstruct

the local variables in each code object. As the results

in Table 5 show, the numbers in Table 3 are not

misleading.

Are certain type changes predominant? The short

answer: no. This seemed to depend heavily on the

particular application; in J--, for example, over 99%

of the type changes were made from None to some

other type. This predominance was not true in gen-

eral, however.

7 A Tale of Two Type Systems

The original motivation for ATI was Python-to-Perl

conversion, determining the appropriate Perl type

speci�ers for converted Python variables. How can

ATI be applied?

In an apparent contradiction, Figure 3 would con-

vert easily into Perl | the resulting program is

shown in Figure 9. This, despite the assertion in

Section 3 that ATI must infer an exact type for vari-

ables! The catch is that Python-to-Perl conversion

involves two type systems. To be more precise, ATI

must infer a type for each Python variable which has

sub foo {

my ($x) = @_;

print "$x\n"; # S1

if ($x) {

$x = 123; # S2

} else {

$x = 'abc'; # S3

}

print "$x\n"; # S4

}

Figure 9: Dynamic typing: the resulting Perl.

a mapping to a unique member of the type system

of interest.

For example, Figure 10 shows a mapping between

ATI-inferred types and Perl types. Figure 3's code

is acceptable by this mapping because both Python

strings and numbers map into Perl scalar variables.

(This particular mapping was used for a manual

translation of some Python code into Perl.)

Another example with two type systems would

be a Python optimizer which would inline string

operations, and would therefore want to locate all

variables with a string type. Here, the inferred

types would have to map into the types fstring, not-

stringg.

8 Future Work

There are many applications which can bene�t from

type information. Progress on a Python-to-Perl

translator is now possible using the ATI informa-

tion; type checkers and optimizers also rely on type

information. A tool to convert legacy Python code

to an optional static typing scheme might be inter-

esting too.

ATI may bene�t by embracing and extending type

inference research done for other dynamically-typed

languages. This includes taking control ow into

account [26], and adding run-time checks to convert

programs into a form that can be type-checked at

compile-time [3].

Dynamic ATI would be a logical variation of this

work. A modi�ed Python interpreter could record

type information as a program runs, over multiple

runs, later inferring types of variables based on the

run-time information.

I would also like to extend the empirical type anal-

ysis in Section 6, using a wider sampling of Python

programs. This would further gauge the amount of

type consistency present in Python programs, and

ATI−Inferred
Type

Perl
 Type

string
number

none

list
tuple

dictionary

function
method

module
class

instance

scalar

scalar
(undef)

array

hash

subroutine

package

scalar
(blessed
reference)

Figure 10: Mapping to Perl types.

would give a good indication of the general applica-

bility of ATI.

9 Conclusion

Type inference is a diÆcult task for dynamically-

typed languages such as Python. The type infor-

mation gathered, however, is essential for some ap-

plications, such as the Python-to-Perl translator I

proposed.

By making aggressive assumptions about how pro-

grammers use variables in their programs | namely,

that variables maintain a consistent type throughout

| it is possible to make type inferences that would

not be possible with a more conservative approach.

With aggressive type inference, I have demon-

strated how type inference may be done in Python

without requiring the programmer to supply explicit

type information.

Acknowledgments

Shannon Jaeger and Jim Uhl proofread this pa-

per and made many helpful suggestions, as did

the anonymous referees and Jeremy Hylton. Also,

thanks to Roger Jaeger and the University of Cal-

gary Department of Computer Science for use of

their computer equipment while I was travelling.

Nigel Horspool suggested mapping store instructions

to their corresponding variables. This work was sup-

ported in part by a grant from the National Sciences

and Engineering Research Council of Canada.

Appendix

In this section, I present the methods used for static

and dynamic analysis, so that the results are repeat-

able and may be extended or reinterpreted.

Static analysis of Python code was performed by

a program which lexically analyzed all .py �les in

a package using the tokenize module. Comments

and blank lines were ignored, so the \lines of code"

calculated for each package is accurate.

All NAME tokens reported by tokenize were ex-

amined for the names exec, eval, execfile, and

import . Conceivably, use of the latter three

could be cloaked by assigning them another name,

but this would be questionable programming prac-

tice and was deemed unlikely. Another possible

problem would be code which re-used the name of a

built-in function for a di�erent purpose; this would

Idle Loading testcode.py

Gady Running gftest.py

Grail Loading http://www.python.org/

HTMLgen Running HTMLtest.test()

J-- Generating MIPS assembly for a

recursive-descent calculator

Pystone Full execution

Table 6: Tasks for dynamic analysis.

arti�cially inate the static occurrence counts. In

fact, this is exactly what happened with Gady,

which re-used the name eval, necessitating manual

analysis.

Other program constructs could prove detrimen-

tal to compile-time analysis too, such as apply(),

setattr(), and manipulations of dict . A more

sophisticated static analysis is required to determine

if an occurrence of one of these other constructs

would be problematic.

For dynamic analysis, a task was chosen for each

package which was intended to exercise a reasonable

subset of the package's code. This proved diÆcult to

gauge for graphical applications like Idle and Grail;

a future study should employ code coverage tools.

The chosen tasks are shown in Table 6.

The Python interpreter was modi�ed to log a

number of events, including:

1. Frame object allocation and deallocation, and

their corresponding code objects.

2. Calls to the built-in functions eval(),

execfile(), and import ().

3. Execution of the IMPORT NAME instruction.

Since this instruction calls import (), the

data reported for import in Table 2 was ad-

justed by the number of times IMPORT NAME was

executed. This way, only the explicit calls to

import () are signi�cant.

4. Execution of the EXEC STMT instruction.

5. Execution of the STORE NAME, STORE FAST, and

STORE GLOBAL instructions, the target variable,

and the type of that variable before and after

the instruction.

6. Instruction execution, for instruction counting.

The generated log �les were later processed to pro-

duce the dynamic data reported in Section 6.

References

[1] A. Aiken and B. Murphy. Static type inference

in a dynamically typed language. Proceedings of

the 18th ACM POPL, 1991, pp. 279{290.

[2] J. Aycock. Compiling Little Languages in

Python. Proceedings of the 7th International

Python Conference, 1998, pp. 69{77.

[3] R. Cartwright and M. Fagan. Soft Typing. Pro-

ceedings of the ACM PLDI '91 Conference,

1991, pp. 278{292.

[4] Corporation for National Re-

search Initiatives. Grail.

http://grail.cnri.reston.va.us/grail/.

[5] C. Chambers. The Design and Implementation

of the SELF Compiler, an Optimizing Compiler

for Object-Oriented Programming Languages,

Ph.D. Dissertation, Stanford University, 1992.

[6] K. D. Cooper and K. Kennedy. EÆcient Com-

putation of Flow Insensitive Interprocedural

Summary Information. SIGPLAN 19, 6 (June

1984), pp. 247{258.

[7] M. Faassen. Re: The way to a faster

python [was Python IS slow !] Posting to

comp.lang.python, May 1999.

[8] R. Friedrich. HTMLgen. http://starship.-

python.net/crew/friedrich/HTMLgen/-

html/main.html.

[9] R. Hindley. The Principal Type-Scheme of an

Object in Combinatory Logic. Transactions of

the American Mathematical Society 146 (De-

cember 1969), pp. 29{60.

[10] O. I. Hougaard, M. I. Schwartzbach, and H.

Askari. Type Inference of Turbo Pascal. Soft-

ware: Concepts and Tools 16 (1995), pp. 160{

169.

[11] J. Hugunin. Python and Java: The Best of

Both Worlds. Proceedings of the 6th Interna-

tional Python Conference, 1997.

[12] K. Jensen, N. Wirth, A. B. Mickel, and J. F.

Miner. Pascal User Manual and Report (Third

Edition), Springer-Verlag, 1985.

[13] R. E. Johnson, J. O. Graver, and L. W.

Zurawski. TS: An Optimizing Compiler for

Smalltalk. OOPSLA '88 Proceedings, 1988, pp.

18{26.

[14] B. T. Lewis. An On-the-y Bytecode Com-

piler for Tcl. Proceedings of the Fourth USENIX

Tcl/Tk Workshop, 1996.

[15] B. T. Lewis. Private communication. Septem-

ber, 1999.

[16] R. E. Masse. Evolutionary Prototyping: \Add

Later" Static Types for Python. Proceedings of

the 7th International Python Conference, 1998,

pp. 91{101.

[17] T. C. Miller. Type Checking in an Imperfect

World. Proceedings of the Sixth ACM POPL,

1979, pp. 237{243.

[18] R. Milner, M. Tofte, and R. Harper. The De�-

nition of Standard ML. MIT Press, 1990.

[19] R. Milner. A Theory of Type Polymorphism in

Programming. Journal of Computer and Sys-

tem Sciences 17 (1978), pp. 348{375.

[20] J. Riehl. PyFront: Conversion of Python to C

Extension Modules. Proceedings of the 7th In-

ternational Python Conference, 1998, pp. 79{

90.

[21] J. A. Robinson. A Machine-Oriented Logic

Based on the Resolution Principle. Journal of

the ACM 12, 1 (January 1965), pp. 23{41.

[22] F. R. Rouse and W. Christopher. A Tcl to

C Compiler. Proceedings of the Third USENIX

Tcl/Tk Workshop, 1995, pp. 115{122.

[23] F. R. Rouse and W. Christopher. A Typing

System for an Optimizing Multiple-Backend

Tcl Compiler. Proceedings of the Fifth USENIX

Tcl/Tk Workshop, 1997.

[24] J. M. Skaller. RFC: Viper: yet an-

other python implementation. Posting to

comp.lang.python, August 1999.

[25] R. Sethi. Programming Languages: Concepts

and Constructs. Addison-Wesley, 1989.

[26] O. Shivers. Data-Flow Analysis and Type Re-

covery in Scheme. In Topics in Advanced Lan-

guage Implementation, P. Lee, ed., MIT Press,

1991, pp. 47{87.

[27] K. Slonneger and B. L. Kurtz. Formal Syn-

tax and Semantics of Programming Languages.

Addison-Wesley, 1995.

[28] K. Walker and R. E. Griswold. Type Inference

in the Icon Programming Language. TR 93-32a,

University of Arizona Department of Computer

Science, 1996.

[29] L. Wall, T. Christiansen, R. L. Schwartz, and

S. Potter. Programming Perl (2nd Edition).

O'Reilly, 1996.

[30] A. Watters. Gady. http://www.chordate.-

com/gadfly.html.

