
PROMOTING COMPUTER LITERACY
THROUGH PROGRAMMING PYTHON

by

John Alexander Miller

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Education)

in The University of Michigan

2004

Doctoral Committee:

Professor Frederick Goodman, Chair
Emeritus Professor Carl Berger
Professor Jay Lemke
Professor John Swales

Copyright 2004

by

John Alexander Miller

The Joys of the Craft

Why is programming fun? What delights may its practitioner expect as
his reward?

First is the sheer joy of making things. As the child delights in his mud
pie, so the adult enjoys building things, especially things of his own design. I
think this delight must be an image of God's delight in making things, a
delight shown in the distinctness and newness of each leaf and each
snowflake.

Second is the pleasure of making things that are useful to other people.
Deep within, we want others to use our work and to find it helpful. In this
respect the programming system is not essentially different from the child's
first clay pencil holder “for Daddy's office.”

Third is the fascination of fashioning complex puzzle-like objects of
interlocking moving parts and watching them work in subtle cycles, playing
out the consequences of principles built in from the beginning. The
programmed computer has all the fascination of the pinball machine or the
jukebox mechanism, carried to the ultimate.

Fourth is the joy of always learning, which springs from the
nonrepeating nature of the task. In one way or another the problem is ever
new, and its solver learns something: sometimes practical, sometimes
theoretical, and sometimes both.

Finally, there is the delight of working in such a tractable medium. The
programmer, like the poet, works only slightly removed from pure thought-
stuff. He builds his castles in the air, from air, creating by exertion of the
imagination. Few media of creation are so flexible, so easy to polish and
rework, so readily capable of realizing grand conceptual structures. …

Yet the program construct, unlike the poet's words, is real in the sense
that it moves and works, producing visible outputs separate from the
construct itself. It prints results, draws pictures, produces sounds, moves
arms. The magic of myth and legend has come true in our time. One types the
correct incantation on a keyboard, and a display screen comes to life, showing
things that never were nor could be.

Programming then is fun because it gratifies creative longings built
deep within us and delights sensibilities we have in common with all men.
(p. 7)

Frederic Brooks, Jr.
The Mythical Man-Month, 1975

ii

DEDICATION

Dedicated to my wife, Jane, and our children, Jessa and Jason.

iii

ACKNOWLEDGMENTS

There were many people who encouraged me while I worked on this

dissertation. First, I’d like to thank my parents, Mervil and Barbara Miller,

who provided a loving, supportive and stable family environment conducive

to intellectual pursuits. “A good beginning is half the battle.”

I’d also like to thank Charles and Genevieve Peterson, who extended an

essential educational career opportunity to me, and continue to bless me with

caring support to my family as it grows. I would also like to thank the

numerous students I had in my ESL classroom: their kindness, generosity

and respect revealed to me the true joy of teaching.

Next, I’d like to thank my advisor, Frederick Goodman, for his practical

wisdom and guidance. With our every conversation, I come away enriched

and refreshed from the depths of his memory and experiences. He is an

educator’s educator, and I am honored to have had the opportunity to work so

closely with him. I would also like to thank the other committee members,

iv

Carl Berger, Jay Lemke, and John Swales, for their suggestions and

recommendations as the dissertation evolved.

I would like to thank my colleagues at the Interactive Communications

and Simulations group: Jeff Stanzler, Jeff Kupperman, Gary Weisserman,

Roger Espinosa, Denise Conanan, Douglass Scott, Edgar Taylor, and Michael

Fahy. Spending the early, heady days of the World Wide Web together

engendered many stimulating and enjoyable conversations.

I would also like to thank Gil Oswald for the time he took reviewing a

draft of this manuscript, and for his gracious and thoughtful suggestions and

feedback.

Finally, I would like to thank my wife, Jane, who persevered knowing

that I could indeed bring this dissertation to completion.

v

TABLE OF CONTENTS
Page

DEDICATION ...ii

ACKNOWLEDGMENTS..iii

LIST OF TABLES ..ix

LIST OF FIGURES ...x

LIST OF APPENDICES...xi

CHAPTER 1: COMPUTER LITERACY ...1

1.0 Introduction...1
1.1 Literacies...4
1.2 Literacy Analogy...10
1.3 Computer Literacy Conventions ..11

Three kinds of signs ...15
Three pillars of literacy..17
Computer Fluency..20
Computer Literacy as the New Rhetoric...22
Expressions and Representations..27

1.4 Literacy enables learning ...31
1.5 Computer literacy in schools ..38
1.6 Issues surrounding the teaching of computer programming............43

What language should be taught? ...44
How should Python be taught?..45

CHAPTER 2: LEARNING PROGRAMMING..47

2.0 Introduction...47
2.1 Programming steps...48

Problem Definition ...49
Algorithm Design ..49

Templates and patterns ..52
Working in teams...52
Importance of planning and describing the algorithm...........53

Code Writing...55

vi

Three types of programming knowledge.................................55
Three types of cognitive knowledge ..58
Knowledge framework for teaching programming.................59

Debugging............. ..64
Documentation..... ..66

2.2 Teaching Programming ..69
Programming not only for computer science majors69
Connectionist teaching...73
Evaluation strategies ...78
Cognitive effects of learning programming.....................................80

2.3 Introduction to Python..83
Advantages of Python: ...85
Disadvantages of Python: ..87
Kinds of computer languages...88
General and domain-specific languages..91
Styles of programming ...93

2.4 Computer Programming for ‘Everybody’ ...96
2.5 Edu-sig newsgroup..105

CHAPTER 3: METHODS AND PROCEDURES ...110

3.0 Introduction...110
3.1 Data profile ...111

Poster participation..113
Thread Dynamics ..114

3.2 Thread Selection Procedure..119
3.3 PhraseRate..125
3.4 Pathfinder text graphs..128

Data Preprocessing ..128
Relationship Matrix Generation..129

3.5 Thread Selection Results..134
3.6 Data Analysis..138

CHAPTER 4: RESULTS ...141

4.0 Introduction...141
4.1 Computer Programming for Everybody...142

Programming and school subjects ...143
Conclusion of computer programming for everybody category146

4.2 Education ..147
4.2a Where does programming ‘fit’ into a curriculum?.................148

Integrating Python into existing classrooms........................149
Creating new Python programming classes155
After-school computer club..156

4.2b Infrastructure...157

vii

Curriculum materials158
Shells and scripts ..159

4.2c Teaching methodologies ...162
Involving the student’s interests...162
Different programming styles ...167
Learning by doing173
Socratic method175
Encouraging planning179
Homework and grading ...181

Conclusion of education category ..183
4.3 Python and Computer Science ...184

Insiders and outsiders..184
Conclusion of Python and computer science category187

4.4 Math-related ...188
Sieve of Eratosthenes...189
Polynomials192
Division194
Assignment and equality ...198
Conclusion of math-related category...200

4.5 Science-related ..201
Dynamic representations...202
Conclusion of science-related category..204

4.6 Programming for Fun ...204
Multimedia205
The ‘why’ of programming ...209
Conclusion of programming for fun category................................213

4.7 Miscellaneous and Unknown..214
The ‘how’ of programming..215
Motivation ..218
Conclusion of miscellaneous and unknown categories221

4.8 Summary...221

CHAPTER 5: CONCLUSION ...224

5.0 Introduction...224
5.1 Method Findings ...225

Use a database ...225
Get to know the data..226
Discard irrelevancies..227
Classify the threads ...228
Characterize the data...229
Thoughts on the procedures...230

Procedure steps230
Initial heuristic231
Subject headings231

viii

PhraseRate and TextGraphs...232
Newsgroups as a data source ..234

5.2 Content Findings ..236
Programming as a literate activity..237
Programming to learn..239
Executable mathematical notation and regular expressions241

5.3 Summing Up ...244
Suggestions for future research...244
Convivial programming ...246

APPENDICES ...252

REFERENCES ..280

ix

LIST OF TABLES

Table page

Table 1 Typical literacy conventions..12

Table 2 Typical computer literacy conventions...............................13

Table 3 Components of programming knowledge60

Table 4 Newsgroup participant roles...109

Table 5 Thread categories ..122

Table 6 Frequency measure for example data131

Table 7 Proximity measures for example data..............................132

Table 8 Normalized frequency measures for example data..........134

Table 9 PhraseRate keyphrases for sample thread136

x

LIST OF FIGURES

Figure page

Figure 1 Distribution of thread lengths ..113

Figure 2 Total no. of messages posted each month.........................115

Figure 3 Most participants posted few messages115

Figure 4 Messages per day for thread length 31.............................116

Figure 5 Messages per day for thread length 38.............................116

Figure 6 Messages per day for thread length 29.............................116

Figure 7 Messages per day for thread length 30.............................117

Figure 8 Messages per day for thread length 29.............................117

Figure 9 Messages per day for thread length 25.............................117

Figure 10 Messages per day for thread length 36.............................118

Figure 11 Messages per day for thread length 42.............................118

Figure 12 Messages per day for thread length 28.............................118

Figure 13 Thread persistence ..119

Figure 14 Average number of different posters by thread length....120

Figure 15 Text Graph of ‘Programming for fun’ thread …………….135

xi

LIST OF APPENDICES

Appendix page

APPENDIX A: CHOSEN THREAD SUBJECT HEADINGS252

APPENDIX B: RESOURCES FOR LEARNING & TEACHING PYTHON..255

APPENDIX C: STORIES FROM THE EDU-SIG ..258

APPENDIX D: COMPUTER ANXIETY...265

1

CHAPTER 1

COMPUTER LITERACY

True, a chimpanzee could not begin to design a car. But, come to think
of it, neither could I. Nor could you or any other person working in

intellectual isolation—without the help of books, conversations,
directions, documents, explanations, and traditions—design a car. Or

even a bicycle. Or a pair of shoes. Or a mousetrap. Apes work in
intellectual isolation because they lack language. We have language, and
therefore our creations and inventions and technologies become collective

efforts and cultural products. With your brain alone, with my brain
alone (minus language and a language-based tradition), we would

consider ourselves very lucky indeed to think of cracking nuts between a
stone hammer and a stone anvil. Our greatest human creation is not the
tool but the word, not the technology that we so treasure and depend on

but the language that has allowed us to talk about it. Language, not
technology, is the most compelling artifact of the human intellect.

—Dale Peterson, Eating Apes

1.0 Introduction

Computers permeate our lives at work and at home, satisfying

professional and recreational goals, enabling a kind of cybernetic1 activity

that one could only imagine a few decades ago. There is a rich variety to

these activities including: systems modeling, graphic designing, multimedia

content creation and organizing, word processing, financial accounting and

transacting, database processing of myriad types of information, scientific

hypothesis testing, not to mention near ubiquitous e-mail corresponding, web

1 “goal-oriented feedback mechanisms with learning” (Pickering, 1995, p. 31)

2

surfing and instant messaging activities that keep us in touch with each

other. For many, if not most, there seems to be a natural affinity with these

machines which gratify a cognitive desire to store, retrieve, and manipulate

information that is important to each of us. However, it is important to

realize that the cybernetic activities described above are mediated through

computer applications that have been written. This particular form of writing

is called computer programming and constitutes the domain of this

dissertation.

In order to communicate with a computer a programmer must use a

language. Although there are many computer languages from which to

choose, there are few designed with the beginning programmer in mind. One

language so designed is Python, and it currently enjoys a burgeoning

popularity among computer programmers. Since computer programming

must be learned, and since Python was designed to be easy to learn, this

dissertation explores what considerations are most important in teaching

Python as a first programming language in a secondary school setting. In

order to address this issue, a large corpus consisting of over three years

worth of messages posted to a public newsgroup was analyzed using

innovative techniques to reduce the data and isolate the relevant portions.

This dissertation, then, is also a study of what techniques are efficacious in

reducing large, textual datasets and their applicability to other researchers

engaged with similarly large, unstructured textual data.

3

In order to address the first question, it will be worthwhile framing it in

a larger context of literacy, that is, what considerations are most important

in teaching people to become increasingly literate in the age of the computer?

We shall see that understanding literacy as a way of knowing enables us to

understand computer literacy as an alternative and supplementary way of

knowing; and furthermore, that computer programming is an essential

component of computer literacy, analogous to the way writing is essential to

traditional literacy.

This first chapter is a comparison of traditional print literacy with the

much newer computer literacy. We will see how computer programming is

related to computer literacy, and how computer literacy is more related to the

rhetorical function of using computers to express oneself than to knowing

how computers themselves work. We then look at how print and computer

literacies enable learning and why computer programming is an essential

component of that learning process.

The second chapter discusses what skills and processes are involved in

writing a computer program, focuses on some connectionist considerations

surrounding the teaching of programming, takes a look at the Python

programming language itself, and describes the genesis of the data source.

The third chapter explicates the methods and procedures used to

analyze the data, distinguishes what was considered relevant from irrelevant

4

in the data, and describes the eight categories that emerged and served as a

framework for the analysis.

The fourth chapter provides the results of the analysis. Going category

by category, the concerns of the posters that addressed this dissertation’s

topic are detailed and summarized. Also, the results of using the methods

and procedures delineated in the third chapter are discussed.

The fifth and final chapter presents the conclusions drawn from the

results and considers the larger role of programming as a literate practice.

1.1 Literacies
The term ‘literacy’ is somewhat charged with contested meanings. A

sense of this can be gleaned from the Usage Note for the word ‘literate’ in the

American Heritage Dictionary (1992):

For most of its long history in English, literate has meant only “familiar
with literature,” or more generally, “well-educated, learned”; it is only
during the last hundred years that it has also come to refer to the basic
ability to read and write. … More recently, the meanings of the words
literacy and illiteracy have been extended from their original connection
with reading and literature to any body of knowledge. For example,
“geographic illiterates” cannot identify the countries on a map, and
“computer illiterates” are unable to use a word-processing system.

Certainly, the use of the term ‘literacy’ in this work is governed more by

the later, more modern sense indicated above. In other words, I take

computer literacy to be more inclusive than just ‘familiarity with computers’;

I explicitly include a ‘reading and writing’ component. In the context of

computer usage, ‘reading’ roughly corresponds to the ability to use a

computer’s operating system and applications productively (which may

5

include the reading and writing skills of traditional print literacy), while

‘writing’ roughly corresponds to the ability to program a computer.

The opposite of literacy is illiteracy (keeping in mind that these are

measured in degrees rather than existing as categorical states), and it is

often claimed that print illiteracy rates are rising in this country. Mihai

Nadin (1997) expresses this complaint in The civilization of illiteracy:

We notice that literate language use does not work as we assume or
were told it should, and wonder what can be done to make things fit our
expectations. Parents hope that better schools with better teachers will
remedy the situation. Teachers expect more from the family and suggest
that society should invest more in order to maintain literacy skills.
Professors groan under the prospect of ill-prepared students entering
college. Publishers redefine their strategies as new forms of expression
and communication vie for public attention and dollars. Lawyers,
journalists, the military, and politicians worry about the role and
functions of language in society. … The major accomplishment of
analyzing illiteracy so far has been the listing of symptoms: the decrease
in functional literacy; a general degradation of writing skills and
reading comprehension; an alarming increase of packaged language
(clichés used in speeches, canned messages); and a general tendency to
substitute visual media (especially television and video) for written
language. (pp. 3-4)

However, instead of bemoaning the decline of literacy, Nadin embraces the

notion that its decline is inevitable, and seeks to describe human life and

interactions that emerge in an ‘illiterate’ world:

The decline of literacy is an encompassing phenomenon impossible to
reduce to the state of education, to a nation’s economic rank, to the
status of social, ethnic, religious, or racial groups, to a political system,
or to cultural history. There was life before literacy, and there will be
life after it. … My position in the discussion is one of questioning
historic continuity as a premise for literacy. If we can understand what
the end of literacy as we know it means in practical terms, we will avoid
further lamentation and initiate a course of action from which all can
benefit. Moreover, if we can get an idea of what to expect beyond the
safe haven now fading on the horizon, then we will be able to come up

6

with improved, more effective models of education. … This leads me to
state from the outset—almost as self-encouragement—that literacy,
whose end I discuss, will not disappear. … For the majority, it will
continue in literacies that facilitate the use and integration of new
media and new forms of communication and interpretation. The utopian
in me says that we will find ways to reinvent literacy, if not save it. …
We give life to images, sounds, textures, to multimedia and virtual
reality involving ourselves in new interactions. Transcending
boundaries of literacy in practical experiences for which literacy is no
longer appropriate means, ultimately, to grow into a new civilization.
(pp. 5-7)

It is within this sense of ‘transcending boundaries of literacy’ that I

frame my argument for computer programming. I do not argue that the rise

of illiteracy must be quelled, rather, I believe that computer literacy will

arise as one of the new literacies Nadin speaks of, and that active promotion

of computer programming will lead to computer fluency, which, due to its

reliance on specific written syntaxes, will also reinvigorate traditional print

literacy skills.

This reinvigoration is implied by Knuth (1992) and his thoughts on

Literate Programming:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do.

The practitioner of literate programming can be regarded as an essayist,
whose main concern is with exposition and excellence of style. Such an
author, with thesaurus in hand, chooses the names of variables carefully
and explains what each variable means. He or she strives for a program
that is comprehensible because its concepts have been introduced in an
order that is best for human understanding, using a mixture of formal
and informal methods that reinforce each other. (p.99)

A similar vision of intertwining literacies is offered by Olson (1985):

7

Computers simply raise, by an order of magnitude, the requirement of
making meanings explicit—a requirement that was begun by giving
communication systems a semantics and by then making that semantics
more explicit and elaborate through literacy. Far from being obsolete,
literate competencies are basic to computational ones. To be intelligent
in the society of computer users is to be skilled in making one’s
meanings explicit. In the 20th century, the world of computing, we are
succeeding in doing what the 16th century, the world of literacy, aspired
to do—make meanings clear and explicit. (p.7)

Knuth challenges programmers to write programs that are ‘explicit’ in

two ways, explicit to the computer, in the sense Olson describes, but also

explicit to other human readers of software programs. In a sense, I’m saying

we can have our cake and eat it too: Computer literacy is emerging as an

alternative literacy in the way Nadin describes, but as such, computer

literacy (especially programming) is so strongly dependent upon traditional

print literacy skills that promoting computer programming also strengthens

those traditional skills.

Furthermore, we can understand this strengthening, this

interdependence of literacies in terms of semiotics as illustrated by Barthes

and Lavers (1993) in Mythologies where they define myth as a second-order

semiotic system. Using their system, I showed how computer literacy and

print literacy are each second-order semiotic systems where mastery of the

first-order semiotic system is a prerequisite for mastery of the second-order

one (Miller, 2001). In this case, computer programming strongly depends on a

specific written syntax, so at least minimal competence in print literacy skills

is necessary for the budding programmer.

8

Besides extending print literacy skills, computer literacy can also extend

scientific literacy skills. In A New Kind of Science (Wolfram, 2002) we are

offered a vision of ways computer literate scientists can conduct experiments

and perform research using computers. Wolfram suggests that much research

in the future may be done this way:

For with calculus there was finally real success in taking abstract rules
created by human thought and using them to reproduce all sorts of
phenomena in the natural world.

But the particular rules that were found to work were fairly
sophisticated ones based on particular kinds of mathematical equations.
And from seeing the sophistication of these rules there began to develop
an implicit belief that in almost no important cases would simpler rules
be useful in reproducing the behavior of natural systems.

During the 1700s and 1800s there was ever-increasing success in using
rules based on mathematical equations to analyze physical phenomena.
And after the spectacular results achieved in physics in the early 1900s
with mathematical equations there emerged an almost universal belief
that absolutely every aspect of the natural world would in the end be
explained by using such equations.

Needless to say, there were many phenomena that did not readily yield
to this approach, but it was generally assumed that if only the necessary
calculations could be done, then an explanation in terms of
mathematical equations would eventually be found.

Beginning in the 1940s, the development of electronic computers greatly
broadened the range of calculations that could be done. But
disappointingly enough, most of the actual calculations that were tried
yielded no fundamentally new insights. And as a result many people
came to believe—and in some cases still believe today—that computers
could never make a real contribution to issues of basic science.

But the crucial point that was missed is that computers are not just
limited to working out consequences of mathematical equations. And
indeed, what we have seen in this chapter is that there are fundamental
discoveries that can be made if one just studies directly the behavior of
even some of the very simplest computer programs. (pp. 44-45)

9

Thus, scientific computer simulations are not just the working out of

mathematical equations, but rather, the execution of algorithms that may

model physical phenomena that cannot be represented by equations. And it is

the conceptualization and embodiment in code of those algorithms that will

more and more constitute the life of the mind of future scientists.

Another way scientific literacy intersects with computer literacy is the

growing field of genetic programming. In “Evolving Inventions” (Koza, Keane

et al. 2003) write:

The first practical commercial area for genetic programming will
probably be design. In essence, design is what engineers do eight hours
a day and is what evolution does. Design is especially well suited to
genetic programming because it presents tough problems for which
people seek solutions that are very good but not mathematically perfect.
Generally there are complex trade-offs between competing
considerations, and the best balance among the various factors is
difficult to foresee. Finally, design usually involves discovering
topological arrangements of things (as opposed to merely optimizing a
set of numbers), a task that genetic programming is very good at. (p. 54)

Furthermore, as such computer literate scientists perform algorithm-based,

simulation-based and genetic programming-based experiments with their

computers (rather than, or alongside, mathematical equation-based ones)

they can help educate a new generation of student/scientists who are ‘looking

over their shoulders’ via internet-based legitimate peripheral participation

(Lave and Wegner, 1991). The rise of computer-mediated communication

systems enables a kind of collaboration-at-a-distance not only between

scientists who are peers, but also between master scientists and student

apprentices.

10

1.2 Literacy Analogy
In order to make the connection between print literacy and computer

literacy, I would like to elaborate on an analogy:

Reading : Writing :: Using a computer : Programming a computer

In order to precisely discriminate what is meant by each term in the analogy,

it helps to define each of them as having two aspects: an external function

and an internal function. Reading, for example, has the external, or

mechanical, function of seeing text on a surface (or, more generally,

perceiving signs in an environment) and the internal function of interpreting

that text to assign meaning(s) to it (usually, but not always, with the aim of

reproducing meaning(s) intended by the author in the reader’s mind). Writing

also has an external, or mechanical, function of manipulating a writing

instrument (pen, typewriter, word processor) on a surface (paper, screen) to

create text and an internal function of strategizing which words, phrases,

ideas, and rhetorical devices to ‘textualize’ in order to create the written

artifact.

Likewise, the other two, computer-based terms in the analogy have a

dual aspect akin to reading and writing, so that we may say ‘using a

computer’ has the external, mechanical function of seeing signs on a surface

and the internal function of assigning meaning to those signs, while

‘programming a computer’ has the external function of manipulating a device

(computer keyboard and mouse) and the internal function of devising and

11

designing data structures and algorithms using a computer language’s syntax

and vocabulary to create a programming artifact.

Although both sets of literacy skills, reading and writing text, and using

and programming computers, involve the encoding and decoding of signs

(discussed shortly), the salient difference between them is the object of their

attention. With written artifacts the object of attention is what is said

(written), whereas with programmatic artifacts, the object of attention is

what is done. Suppose, for example, we are examining a PDF (Portable

Document Format) document on a computer screen. To the extent that our

attention is focused on the textual content of the document, we are engaged

in a traditional print literacy skill: reading. However, to the extent that our

attention is focused on jumping to page 25 of that document, or adding a

bookmark to it, or adding a personal comment, or copying a passage, or

zooming in for an enlarged view, or clicking on a hyperlink, or emailing the

document to a colleague, or printing selected pages, or even using the Help

menu to find out how to do any of these actions with the document, we are

engaged in a computer literacy skill: using a computer.

1.3 Computer Literacy Conventions

In the past two decades, computers have become almost ubiquitous (in

the US and other developed countries). Computers enhance and extend

traditional print (and other kinds of) literacy skills by greatly augmenting

one’s ability to manipulate the symbols of literacy: alphabetic characters,

12

words, paragraphs, documents, references, numerals, equations, charts,

maps, images, graphics, sounds, video, etc. However, these machines also

Table 1 Typical literacy conventions

Alphabet Footnotes
Spelling Endnotes
Punctuation Indexes
Grammar Tables of Contents
Sentences Parenthetical comments
Paragraphs Authors
Rhetorical Devices Textbooks
Chapters Reference Works
Quoting Periodicals
Stories Letters
Poetry Publishers
Novels Anthologies

impose an additional cognitive load on the various literacy skills they

enhance. For example, before computers, being literate consisted of learning

a wide-ranging set of conventions applied to written text (see Table 1).

The pervasive expectation threading throughout all these literary

conventions was that the symbols being manipulated were either immutably

printed, or relatively fixed, on paper. This, in turn, imposed certain

limitations on the degree of interactivity with those symbols by both writer

and reader. With computers and word-processing applications and the

Internet, these limitations have greatly diminished, and expectations of what

the literacy skill set consists of have risen concomitantly. For instance,

cutting and pasting text from one document to another, formatting a

document for publication in a journal, finding and replacing all occurrences of

the word ‘skill’ with the word ‘ability’ throughout a document, inserting a bar

13

chart into a document, and posting a version of an article on a webpage are

all examples of computer-assisted literacy skills that can reasonably be

Table 2 Typical computer literacy conventions

Files Folders
Undo Copy and Paste
Find and Replace Multimedia Presentation
‘Desktop’ ‘Clipboard’
Attachment Spreadsheet

expected of a literate person these days. In other words, these procedures and

their artifacts constitute additional conventions that could be added to a list

like the one above (see Table 2).

This raises a question. Do these additional operating system and word-

processing skills constitute an extension of what it means to be literate, or do

they, along with other computer-enhanced symbol-manipulation skills such

as using a spreadsheet and presentation software and digital photo editing,

constitute a new kind of literacy, computer literacy?

I argue that facility with computers is indeed a new kind of literacy. The

earlier literacies (print literacy, numeric literacy, media literacy) represent

ways of communicating with others where ‘others’ in those cases are usually

assumed to be ‘other humans’ (with the rare exception being chimpanzees or

dolphins). However, in this case, computer literacy represents a way of

communicating with, not another human (directly), but with a machine (or

perhaps more accurately, a machine system, if the computer is attached to a

14

network)2. Even though it is probably most often the case that the reason the

user is interacting with a machine is to create an artifact (or message) which

will be communicated to another human, the concepts involved in

accomplishing this task are different enough from those of traditional print

literacy that it constitutes a qualitatively different experience which deserves

a ‘literacy’ appellation. We expect computer users to design artifacts, retrieve

information, configure operating systems, program and use applications,

maintain hard drives, as well as have some sort of understanding of how

their computers, networks, applications, file systems and digital objects work.

That is, there now exists a rich set of abstract symbols constituting

operations on ‘computable resources’ which manipulators (‘writers’ and

‘readers’) of those symbols need to learn in order for meaningful

communication (between human and machine) to occur and which we can

refer to as computer literacy.

For example, sending an e-mail attachment to a newsgroup constitutes

a symbol manipulation that requires a certain amount of care and

understanding that is different from what is involved with sending the same

information through postal mail. There are a host of variables to consider

when performing this seemingly simple act, and becoming computer literate

involves anticipating and dealing with those variables. First there is the

2 It could be argued that it is humans who created the computer and the communication
protocols for interacting with it, so communication with a machine is indirectly
communication with the person (or committee, or company) that created the machine and its
protocols.

15

attachment’s file format. Most any recipient will likely be able to open a

simple text file. However other text documents created by proprietary word

processors require the same or similar application on each recipient’s

machine (or at least some way of getting it opened remotely). There is also

the issue of how the newsgroup server handles attachments: some let them

through; many others discard them. How is the attachment to be compressed,

if at all? What about language encoding issues? What about the perceived

risk of viruses hidden in attachments? Is there another way to distribute the

information?

Understanding these and other issues means understanding in some

way how computers operate, and how our interactions with computers affect

the way our messages and other artifacts are handled. Understanding many

of these issues involves understanding conventions which, when consistently

invoked by a critical mass of users, becomes part of the knowledge base for

interacting with computers. These conventions, in turn, create expectations

about the process of creating, sending and receiving messages and artifacts

mediated through computers.

Three kinds of signs
Computer code consists of sequences of signs generated by humans in a

computing environment. Charles Sanders Peirce postulated that there were

three kinds of signs: icons, indexes, and symbols. These three kinds are

distinguished by the relationship they hold with their ‘dynamic object,’ or

16

that which the sign refers to (Boyarin, 1992, p. 115-116). He identified icons

as signs that are determined by their dynamic object by virtue of their own

internal nature and are characterized by qualities of feeling and unity. For

example, icons easily identify many corporations, flags serve as iconic

representations of countries, and many traffic signs are iconic rather than

textual. In this context, we note that computer interactions utilizing a

graphical user interface heavily rely on the use of icons to identify

applications and document types (for example, .pdf, .doc, .qt, .psd and .zip

files); eventually, these icons become conventional.

Peirce says that the second kind of sign, indexes, are determined by

their dynamic object by virtue of being in a real relation to it and are

characterized by the experience of effort and action. For example, proper

names serve as indexes to the people they refer to, as do symptoms of

diseases. In computer literacy, the naming of the documents we create is a

primary example of indexical signs. Often, the extensions at the end of the

filename are used to identify the kind of file it is, and these indexical

extensions also become conventional (for example, .jpg, .pdf, .doc, .gif, .txt,

etc.) A similar convention exists for the naming of network domains.

However, it is the third kind of sign we are most interested in, symbols,

which are signs that are determined by their dynamic object only in the sense

that they will be so interpreted. In other words, a symbol’s meaning is wholly

arbitrary, and as such, depends on convention, habit, or a natural disposition

17

of the interpretant. This, of course, includes programming languages such as

Python where the symbols used are wholly arbitrary (yet resonant with the

written English language, a much larger set of arbitrary symbols) and where

the programmer learns the conventions of the language in order to write

expressions that the Python interpreter can properly interpret. So, we see

that computer literacy consists of learning a set of conventions arising out of

the use of different kinds of signs. This applies not only to the use of

computers, but also encompasses the programming of computers.

Three pillars of literacy
Andrea diSessa (2000), in Changing Minds: Computers, Learning and

Literacy describes what he calls the three pillars of literacy. The first is the

material pillar involving “external, materially based signs, symbols,

depictions, or representations.” The components of interacting with a

computer, including computer code, certainly consist of these kinds of

materials as we just saw in the discussion of signs. DiSessa also says that the

material pillar of literacy has two important features: they are

technologically dependent, and they are designed. Both of these features are

true of computer artifacts and computer languages.

The second pillar of literacy is mental or cognitive, that is, the

inscriptions of the material pillar are meaningless without a corresponding

consciousness to bring meaning to them. “Clearly the material basis of

literacy stands only in conjunction with what we think and do with our minds

18

in the presence of inscriptions” (p. 8). Indeed, this cognitive pillar constitutes

much of the effort of learning a programming language, as detailed in the five

kinds of programming knowledge in the second chapter (the knowledge

framework for teaching programming). But it also presupposes much

auxiliary knowledge associated with computer literacy, that is, knowing how

to use a computer.

The third pillar of literacy is social, that is, a literacy does not exist

solely with one person. Its conventions are shared among a group of people

who use it to communicate or calculate or perform some other function of

importance to the group. Computer use is certainly social in that many

people share the conventions of using their machine’s operating system, and

of the applications that run on it. Programming languages, such as Python,

are also included in that social milieu by having their own set of conventions

that are shared by the programmers who learn that language.

Having described these three pillars, diSessa (2000), defines a central

hypothesis of literacy: “A literacy is the convergence of a large number of

genres/social niches on a common, underlying representational form” (p. 24).

We see this definition in action by considering the multitude of ways people

use their computers. Thus, one can send and receive a variety of text-based

messages such as e-mail, word processing documents, newsletters, etc. using

a computer (‘a common, underlying representational form’). One can read and

create static graphic-based messages such as spreadsheet documents,

19

graphing calculator equations, drawings, presentations etc. using a computer

(‘a common, underlying representational form’). One can read and create

dynamic graphics such as, movies, slideshows, virtual reality scenes, etc.

using a computer (‘a common, underlying representational form’). Across all

of these activities (genres, social niches), is a quickly evolving (not yet

universal) set of conventions that enable users to ‘read’ the computer

applications being employed for their tasks, ‘write’ the messages they wish to

convey, and ultimately, create new message-creating tools themselves.

Increasingly, too, this ‘body of knowledge’ that computer literacy is

comprised of is coming to resemble the cognitive structures that computer

programmers use to construct their programs and applications, as if these

artifacts that computer users create were ‘programmed’. Harrell (2003)

details this evolution:

The tools used to present and create media art lie behind every media
artwork. The theory of programming languages is a useful means by
which to characterize these media. Formal languages offer broad insight
into the nature of computational manipulation and specific
organizational structures of imperative languages reveal reflections of
these structures in media software. This is a natural reflection because
the theory of languages expresses organized models for executing
algorithms and structuring data, which are the types of manipulations
human creators perform on media when treating it as computational
data.

Here we see again an example of diSessa’s definition of a literacy: “the

convergence of a large number of genres/social niches on a common,

underlying representational form,” that is, a large number of media arts

20

niches are converging on an underlying representational form that look and

behave very much like programming languages.

Computer Fluency

Just as there are degrees of print literacy, ranging from barely literate

to highly literate, there are also degrees of computer literacy. Lawrence

Snyder, chairman of the Committee on Information Technology Literacy that

produced “Being Fluent With Information Technology,” a report published in

June 1999 by the National Research Council, in an interview with Florence

Olsen (2000), discusses the differences between computer literacy and

computer fluency:

Think of fluency as having three kinds of knowledge—skills , concepts,
and logical reasoning. Skills are knowing how to use e-mail, browse the
Web, and so forth. The basic concepts that students need to know for
fluency are such things as how does a computer work, what is a
network, how do we represent information digitally, algorithmic
thinking, things like that. The intellectual capabilities needed for
fluency include logical reasoning, the ability to manage complexity, to
troubleshoot and debug information systems.

One way to promote such computer fluency is to engage students in

computer-based projects:

The report proposed teaching fluency in the context of projects that
require students to use those three kinds of knowledge. So let me give
you an example: formulating an H.I.V.-tracking system for a hospital or
doctor's office. It's a great project. It is a database project, because you
need to record clients coming into the clinic, to keep track of the
specimens they give, and where the specimens are sent out for testing. A
project gives you a chance to learn and practice three or four skills,
three or four concepts, and three or four capabilities.

21

One place to embed such computer projects is in programming classes.

This wouldn’t necessarily mean teaching C++ or Java or other ‘heavy-duty’

compiled languages. Guido van Rossum, originator of the Python

programming language, initiated a general computer literacy research effort

called Computer Programming for Everybody (CP4E) (1999) which purports

to “improve the state of the art of computer use, not by introducing new

hardware, nor even (primarily) through new software, but simply by

empowering all users to be computer programmers.” He goes on to describe

the goals and motivation of this research effort:

Our plan has three components:

• Develop a new computing curriculum suitable for high school and
college students.
• Create better, easier to use tools for program development and
analysis.
• Build a user community around all of the above, encouraging feedback
and self-help.
…
In the future, we envision that computer programming will be taught in
elementary school, just like reading, writing and arithmetic. We really
mean computer programming—not just computer use (which is already
being taught). The Logo project, for example, has shown that young
children can benefit from a computing education. Of course, most
children won't grow up to be skilled application developers, just as most
people don't become professional authors—but reading and writing
skills are useful for everyone, and so (in our vision) will be general
programming skills.
…
Even if most users do not program regularly, a familiarity with
programming and the structure of software will make them more
effective users of computers. For example, when something goes wrong,
they will be able to make a better mental model of the likely failure,
which will allow them to fix or work around the problem.

22

By making computer literacy more commonplace, van Rossum hopes to

answer the question, “What will happen if users can program their own

computer?” In other words, what changes to individuals and society,

analogous to the changes wrought by mass print literacy, will occur when

programming computers is as ubiquitous as, say, using a word processor is

now? Clark (1997) puts this process in the context of becoming more cyborg-

like:

We see some of the 'cognitive fossil trail' of the Cyborg [cybernetic
organism] trait in the historical procession of potent Cognitive
Technologies that begins with speech and counting, morphs first into
written text and numerals, then into early printing (without moveable
typefaces), on to the revolutions of moveable typefaces and the printing
press, and most recently to the digital encodings that bring text, sound
and image into a uniform and widely transmissible format. Such
technologies, once up-and-running in the various appliances and
institutions that surround us, do far more than merely allow for the
external storage and transmission of ideas. They constitute, I want to
say, a cascade of 'mindware upgrades': cognitive upheavals in which the
effective architecture of the human mind is altered and transformed.

We understand the word ‘cyborg’ in the sense defined by Haraway (1992)

where she says “the cyborg is the figure born of the interface of automaton

and autonomy” (p. 139, in Aarseth, 1997, p. 54); we can think of cyborg as the

symbiosis of mechanism and organism. This points to one possible direction

that society may evolve as programming approaches the ubiquity mass print

literacy has currently achieved.

Computer Literacy as the New Rhetoric
Why study computers? Is there any value to such study? One

suggestion, which we might call the joy of proficiency, comes from Ong (1991):

23

Technologies are artificial, but—paradox again—artificiality is natural
to human beings. Technology, properly interiorized, does not degrade
human life but on the contrary, enhances it. The modern orchestra, for
example, is the result of high technology. A violin is an instrument,
which is to say a tool. An organ is a huge machine, with sources of
power – pumps, bellows, electric generators – totally outside its
operator. Beethoven’s score for his Fifth Symphony consists of very
careful directions to highly trained technicians, specifying exactly how
to use their tools. … The fact is that by using a mechanical contrivance,
a violinist or an organist can express something poignantly human that
cannot be expressed without the mechanical contrivance. To achieve
such expression of course the violinist or organist has to have
interiorized the technology, made the tool or machine a second nature, a
psychological part of himself or herself. This calls for years of ‘practice’,
learning how to make the tool do what it can do. Such shaping of a tool
to oneself, learning a technological skill, is hardly dehumanizing. The
use of a technology can enrich the human psyche, enlarge the human
spirit, intensify its interior life. (p. 83)

Ong is comparing the technology of musical performance with the

technology of writing and arguing that competence in either enhances our

lives. To achieve a similar effect of enrichment, enlargement and

intensification in our lives through the technology of computer literacy

requires a similar process of “interiorization”. This dissertation explores the

practices of programming teachers that can guide us to imbue students with

at least a taste of the satisfaction that comes from becoming computer

literate.

To achieve a similar competency with the technology of traditional print

literacy, we learned what was traditionally called rhetoric:

We have in the West a venerable tradition of studying how human
attention is created and allocated: the “art of persuasion” which the
Greeks called rhetoric. A better definition of rhetoric, in fact, might be
“the economics of human attention-structures,” for whenever we
“persuade” someone, we do so by getting that person to “look at things

24

from our point of view,” share our attention-structure. (Lanham, 1991,
p. 227)

According to Michael Goldhaber, attention is the currency of cyberspace:

So a key question arises: Is there something else that flows through
cyberspace [besides information], something that is scarce and
desirable? There is. No one would put anything on the Internet without
the hope of obtaining some. It's called attention. And the economy of
attention - not information - is the natural economy of cyberspace. … In
his online book Virtual Community, Howard Rheingold lays out two
guidelines: “Rule Number One is to pay attention. Rule Number Two
might be: Attention is a limited resource, so pay attention to where you
pay attention.” (1997a; see also Goldhaber, 1997b)

Thus, some of these modern expressions of rhetoric, or “the science of

human attention-structures” (Lanham, 1991, p. 134), such as web sites and

various other activities emerging on the Internet, are growing in importance.

Computer literacy will be essential if students are to succeed in the process of

“interiorizing” web skills that enable competency in these rhetorical

activities. We note that the term rhetoric has a somewhat negative

connotation, and for Lanham, unjustifiably so:

The intellectual structures of formal rhetoric have formed part of
Western culture for so long, and yet we have for so long suspected and
despised rhetoric as simply hypocrisy and deception, that it is very
difficult to recognize it for what it is—an information system. Systems,
at least for humanists, have never escaped from the Platonic orbit; they
are closed patterns organized like human society in the Republic.
Everyone has a single job; every element a fixed place; the aim is perfect
stasis, with an emphasis on both “perfect” and “stasis.” Our notion of
systems is Platonic philosophy on the one hand and physics on the
other. What Plato wanted above all to exile from his utopia, like Thomas
More after him, was style, the unabridged range of ornament, of
purposeless play. Rhetoric defines itself as a counter-system to the
Platonic political order by admitting stylistic, ornamental behavior, by
acknowledging that such behavior lies at the heart of human life, is
what human politics is all about. If stylistic behavior is acknowledged as
part of the complex human “reason,” then rhetoric becomes the

25

systematic attempt to account for this complex “reason,” and find
agreements within it. (Lanham, 1993; p. 57)

Lanham’s major thesis is that philosophy (think ‘science’) and rhetoric

(think ‘humanities’ or ‘arts’) are interestingly antagonistic, that philosophy

has been ascendant for the past three hundred years or so, that rhetoric is

making a comeback (through much of what Ong refers to as ‘secondary

orality’), and that digital technology is making these new rhetorical devices

available to the masses:

The quarrel between the philosophers and the rhetoricians constitutes
the quarrel in Western culture. McLuhan’s argument for electronic
media reintroduced the rhetorician’s conception of language, and of
human self and society, after three hundred years dominated by the
philosophers, with their strongly opposed conceptions of language and
social reality. … The rhetorical/philosophical distinction, though it
grows from the technological distinction between oral and literate
cultures, concerns more than technology. It debates opposed theories of
human motive, human selfhood, and human society. (pp. 202-203)

Classical rhetoric, and hence all of classical education, was built on a
single dominant exercise: modeling. The key form was the oration, and
it was rehearsed again and again in every possible form and context.
Declamatio, as the modeling of speeches came to be called, stood at the
hub of Western education, just as computer modeling is coming to do
today. The world of electronic text has reinstated this centrality of
modeled reality. The computer has adopted once again, as the
fundamental educational principle, the dramatizing of experience. (p.
47)

This ‘dramatizing of experience’ extends beyond language; we can also, says

Richard Buchanan (1989), think of design as rhetoric:

Communication is usually considered to be the way a speaker discovers
arguments and presents them in suitable words and gestures to
persuade an audience. The goal is to induce in the audience some belief
about the past (as in legal rhetoric), the present (as in ceremonial
rhetoric), or the future (as in deliberative or political rhetoric). The
speaker seeks to provide the audience with the reasons for adopting a

26

new attitude or taking a new course of action. In this sense, rhetoric is
an art of shaping society, changing the course of individuals and
communities, and setting patterns for new action. However, with the
rise of technology in the twentieth century, the remarkable power of
man-made objects to accomplish something very similar has been
discovered. By presenting an audience of potential users with a new
product—whether as simple as a plow or a new form of hybrid seed corn,
or as complex as an electric light bulb or a computer—designers have
directly influenced the actions of individuals and communities, changed
attitudes and values, and shaped society in surprisingly fundamental
ways. This is an avenue of persuasion not previously recognized, a mode
of communication that has long existed but that has never been entirely
understood or treated from a perspective of human control such as
rhetoric provides for communication in language. (p. 93)

And just as Lanham seeks to reunite philosophy and rhetoric into a

more dynamic oscillation than existed previously through the use of computer

technology, Buchanan does also for science and design through the use of

technology writ large:

The primary obstacle to such understanding is the belief that technology
is essentially part of science, following all of the same necessities as
nature and scientific reasoning. If this is true, technology cannot be part
of design rhetoric, except as a preformed message to be decorated and
passively transmitted. Design then becomes an esthetically interesting
but minor art that is easily degraded into a marketing tool for consumer
culture. However, if technology is in some fundamental sense concerned
with the probable rather than the necessary—with the contingencies of
practical use and action, rather than the certainties of scientific
principle—then it becomes rhetorical in a startling fashion. It becomes
an art of deliberation about the issues of practical action, and its
scientific aspect is, in a sense, only incidental, except as it forms part of
an argument in favor of one or another solution to a specific practical
problem. (p.93-94)

Buchanan’s, (and by analogy, Lanham’s) argument rests on the premise

that (computer) technology is more concerned with the ‘probable’, with the

‘contingencies of practical use and action’, than with ‘necessity’, with the

‘certainties of scientific principle’. If we accept this premise, then, for

27

Buchanan, design becomes strongly rhetorical (in a positive sense), able to

persuade in ways akin to spoken and written rhetorical devices. And for

Lanham, rhetoric itself becomes more of an equal partner with philosophy.

What this suggests is that computer literacy, becoming proficient with

computer technology, can be situated closer to rhetoric than philosophy,

closer to design than science. Becoming computer literate, therefore, means

less of ‘learning about how computers work’ and more of ‘using computers to

express oneself.’ The myriad variety of digital messages, designed artifacts

that have been, and continue to be created to persuade an audience of some

idea or action, can be studied in a manner analogous to the way traditional

spoken and written communication artifacts were studied in classical

rhetoric. And furthermore, achieving competency, proficiency, or even

virtuosity in the study and creation of such digital artifacts can enrich,

enlarge and intensify our lives in the way Ong suggests musicianship can.

Expressions and Representations

Finally, if we consider computer literacy as the modern rhetoric uniting

philosophy/science with humanities/design/arts, we need to carefully consider

the nature of the artifacts each domain creates.

Jerome Bruner (1986) claims that “there are two modes of cognitive

functioning, two modes of thought, each providing distinctive ways of

ordering experience, of constructing reality” (p. 11). He goes on to say:

Each of the ways of knowing, moreover, has operating principles of its
own and its own criteria of well-formedness. They differ radically in

28

their procedures for verification. A good story and a well-formed
argument are different natural kinds. Both can be used as means for
convincing another. Yet what they convince of is fundamentally
different: arguments convince one of their truth, stories of their
lifelikeness. The one verifies by eventual appeal to procedures for
establishing formal and empirical proof. The other establishes not truth
but verisimilitude. (p. 11)

These two modes correspond to two traditional philosophical functions of

language, namely, representation and expression. A useful way to distinguish

these two functions is to examine Richard Rorty’s (1989) analysis of

metaphor3 as seen by positivists and romantics:

The Platonist and the positivist share a reductionist view of metaphor:
They think metaphors are either paraphrasable or useless for the one
serious purpose which language has, namely, representing reality. By
contrast, the Romantic has an expansionist view: He thinks metaphor is
strange, mystic, wonderful. Romantics attribute metaphor to a
mysterious faculty called the “imagination,” a faculty they suppose to be
at the very center of the self, the deep heart’s core. Whereas the
metaphorical looks irrelevant to Platonists and positivists, the literal
looks irrelevant to Romantics. For the former think that the point of
language is to represent a hidden reality which lies outside us, and the
latter thinks its purpose is to express a hidden reality which lies within
us.

Positive history of culture thus sees language as gradually shaping itself
around the contours of the physical world. Romantic history of culture
sees language as gradually bringing Spirit to self-consciousness. (p.19,
my emphasis)

Thus, representation corresponds to Bruner’s ‘well-formed argument,’

while expression corresponds to his ‘good story’ (where, of course, metaphors

are welcome!) I do not subscribe to either the positivist or the romantic view

entirely; it appears that both functions of language are valid, and that these

3 In his discussion, Rorty is describing Donald Davidson’s view of language, whose view is
antithetical to either a positivist or romantic view.

29

functions interpenetrate each other, that is, representations of external

reality are also used to express aspects of our interior lives, and that

expressions of our interior lives are also used to represent exterior reality.

The former establishes the ground for our story-telling expressions (but of

course stories need not be constrained by objective reality), while the latter

gives life to otherwise lifeless scientific representations (but such subjective

appeals need not be considered when evaluating their validity.)

This split between the two modes of cognitive functioning runs deeply

through our modern educational system. Kieran Egan (2001) discusses this

split and how one function is more closely associated with oral language,

while the other is more closely related to written language. He describes the

‘expression’ function as socialization, that is, the function of schools to

socialize our students into the larger society in which our schools are

embedded. This is largely accomplished through story-telling, the ancient art

that emerged after the development of human language. This socialization

function was developed by hunter-gatherer tribes to imbue their young with

images of who ‘we’ are and what we are doing here—in this forest, on
this plain, by this seashore, among these hills, alongside these animals,
under these stars—and where we are going next. The stories typically
told about gods or sacred ancestors who warranted the norms and
values that constituted the culture of the particular hunter-gatherer
society. (Egan, 2001, p. 924)

Here we see the appeal to rhetorician-artists and their affinity for

expressions of verisimilitude.

30

Egan describes the other cognitive function, as embodied by

representations or well-formed arguments, as being founded on the academic

ideal that emerged after the development of literacy:

Literacy has allowed generations of people to record their knowledge
and experience. Further generations can compare that recorded
knowledge with what they can see or discover and leave a more accurate
record; and they can compare other’s experience with their own,
enlarging and enriching their experience in consequence. Today we have
stored vast amounts of knowledge in written records and we have access
to a vast array of varied human experience. These enable our minds to
transcend our own time, place, and circumstances. … When the best
accumulated knowledge coded in writing is learned, Plato taught, it
transforms the mind of the learners and enables them to understand the
world more accurately and truly. (p. 928-9)

This clearly shows the emphasis on representations and its appeal to the

philosopher-scientist.

We see now that one mode of thought, that of the well-formed argument,

is the goal of the philosopher/scientist, while the other, that of the good story,

is the goal of the rhetorician/artist. Bruner says that the first mode, “the

paradigmatic or logico-scientific one, attempts to fulfill the ideal of a formal,

mathematical system of description and explanation. It employs

categorization or conceptualization and the operations by which categories

are established, instantiated, idealized, and related one to the other to form a

system” (p. 12). Whereas the second, “the narrative mode leads instead to

good stories, gripping drama, believable (though not necessarily ‘true’)

historical accounts. It deals in human or human-like intention and action and

the vicissitudes and consequences that mark their course” (p. 13). Each of

these modes is essential to a full human life; additionally, each constitutes a

31

world in which facility with computers and computing can assist in the

creation of the computer literate user’s messages and artifacts of

representation, or messages and artifacts of expression. Later, we will see

how these two cognitive modes are used in computer programming.

1.4 Literacy enables learning
One of the primary effects of learning to read is enabling students to

read to learn. Indeed, reading is perhaps the primary method for reproducing

knowledge in school, thus acquiring this skill is of paramount importance in

schooling. There is the corollary maxim that one effect of learning to write is

to write to learn; that is, to use the process of writing to explore what one

knows and further and/or solidify one’s understanding of a topic by

expressing it to others textually. Ong (1988) reminds us:

To say writing is artificial is not to condemn it but to praise it. Like
other artificial creations and indeed more than any other, it is utterly
invaluable and indeed essential for the realization of fuller, interior,
human potentials. Technologies are not mere exterior aids but also
interior transformations of consciousness, and never more than when
they affect the word. Such transformations can be uplifting. Writing
heightens consciousness. Alienation from a natural milieu can be good
for us and indeed is in many ways essential for full human life. To live
and to understand fully, we need not only proximity, but also distance.
This writing provides for consciousness as nothing else does. (p. 82)

These effects are sometimes achieved in schools, and, by analogy, point

to one reason why it may be important to become computer literate. Before

exploring that, however, there is another notable effect that being literate

enables: participation in communities. For example, Benedict Anderson

32

(1991) describes how reading the newspaper fosters a shared sense of

community:

In this perspective, the newpaper is merely an “extreme form” of the
book, a book sold on a colossal scale, but of ephemeral popularity. Might
we say: one-day best-sellers? The obsolescence of the newspaper on the
morrow of its printing–curious that one of the earlier mass-produced
commodities should so prefigure the inbuilt obsolescence of modern
durables–nonetheless, for just this reason, creates this extraordinary
mass ceremony: the almost precisely simultaneous consumption
(‘imagining’) of the newspaper-as-fiction. We know that particular
morning and evening editions will overwhelmingly be consumed
between this hour and that, only on this day, not that. … The
significance of this mass ceremony–Hegel observed that newspapers
serve modern man as a substitute for morning prayers–is paradoxical. It
is performed in silent privacy, in the lair of the skull. Yet each
communicant is well aware that the ceremony he performs is being
replicated simultaneously by thousands (or millions) of others of whose
existence he is confident, yet of whose identity he has not the slightest
notion. Furthermore, this ceremony is incessantly repeated at daily or
half-daily intervals throughout the calendar. What more vivid figure for
the secular, historically clocked, imagined community can be
envisioned? At the same time, the newspaper reader, observing exact
replicas of his own paper being consumed by his subway, barbershop, or
residential neighbours, is continually reassured that the imagined world
is visibly rooted in everyday life. (p. 35)

We see most eloquently how embedded in community literacy enables a

modern newspaper reader to be. Of course, there are numerous other

traditional communities literate citizens belong to: periodical subscribers,

book clubs, letters-to-the-editor writers, groups informed via newsletters, to

name but a few, including some not so obvious ones, such as the community

of consumers who read labels at the grocery store.

But recently, a new class of community has arisen that depends not only

on traditional print literacy for its existence, but also the ability to

manipulate a computer. These computer-based communities, such as e-mail

33

lists, instant messaging groups, weblog groups, usenet groups, and others

bind people in ways that traditional print literacy communities could not. We

will see in Chapter Two how the data for this dissertation originates from one

of these ‘discourse communities’. Moreover, the nature of participation in

these communities is also altered. Whereas print literacy community

members were largely readers, or consumers of information, computer

literacy community members are much more likely (and able) to also be

writers, or providers of information.

Granted, some of this so-called information is merely personal opinion,

but some of it provides a wealth of services to individuals seeking specific

information about specific questions currently impinging on their lives. These

services may be anecdotes based on personal or second-hand experiences, or

pointers to relevant information providers, or sympathetic responses from

others who have shared similar experiences. These messages do not

essentially differ from what might have been shared orally, but the reach of

the messages differs significantly in two ways: The communicants may be

widely dispersed geographically, and the audience of ‘listener-ins’ may be

much larger than what would be possible using only oral means. Thus

computer literacy, coupled with print literacy skills, enables participation in

a more ‘nuanced’ set of communities than just print literacy communities, as

written participation in such communities by its members stamps those

34

communities with a ‘character’ that is qualitatively different than those led

by a single individual.

We see a similar claim made by Lanham (1993):

The digital computer both strengthens and weakens the oration as a
compositional form and educational technique. On the one hand, what
the computer does best, besides counting, is modeling. It has made
learning through rehearsal-reality possible across the complete range of
human thinking and planning. Declamatio was education by endless
rehearsal-reality, and the computer has simply adopted and expanded
this basic expressive technique. On the other hand, electronic text is
clearly finding its way to a new, and a new kind of, paradigm for
writing—interactive on-line conversation. Such a form represents a
movement into nonlinear hypertextual space where the classic oration
cannot follow. … In a classroom based on networked personal
computers, the teacher no longer provides the authoritarian focus.
Teacher is but one voice on-line, and other voices too timid to speak in
class are often emboldened by the different and more protected role an
on-line conversation provides (p. 78).

Lave and Wenger (1991) advanced the concept of ‘legitimate peripheral

participation’ in which “learning is an integral part of generative social

practice in the lived-in world. … Legitimate peripheral participation is

proposed as a descriptor of engagement in social practice that entails

learning as an integral constituent” (p. 35). This social practice can be

situated in the classroom, but can also extend to the Internet. In an

interview, John Seely Brown links this concept with ‘lurking,’ that is, reading

online conversations without contributing to the discourse:

Lurking is a prosocial activity?

Absolutely. Lurk is the cognitive apprenticeship term for legitimate
peripheral participation. The culture of the Internet allows you to link,
lurk, and learn. Once you lurk you can pick up the genre of that
community, and you can move from the periphery to the center safely
asking a question – sometimes more safely virtually than physically -

35

and then back out again. It has provided a platform for perhaps the
most successful form of learning that civilization has ever seen. We may
now be in a position to really leverage the community mind.

Is that another way of saying open source?

Open source is about creating "literacy." Successful open source creates
communities that are literate in understanding the dynamics of what
code can or cannot do, global communities that can create standards
with minimal elegance. ... Open source may also give us a way to crack
the robustness problems of really complex systems. In Linux, for
example, you write code to be read by others as well as executed by the
computer. Writing code to be read is a great form of community hygiene.
And when code is meant to be read by others, it has its own social
life—it gets picked up by the community and used in all kinds of new
ways. Pretty soon the community mind becomes a new kind of platform
for innovation. (Schrage, 2000)

Participating (and lurking) in such online communities is one example

of an effect of computer literacy suggested earlier by print literacy, that is, it

will be important to learn computer literacy because students will use

computer literacy to learn. Like regular print literacy, this has two aspects

corresponding to reading and writing. One aspect is as a user or consumer of

computer applications, the other aspect is as a creator, or originator, or

initiator of computer programs, in other words, as a programmer. Both

aspects are involved when using computer literacy to learn, but it is likely

that the first aspect will be the more heavily used mode, while the second,

like writing itself, the more difficult and less used mode (and also the one

contributing more to computer fluency as described above). Note that there is

usually a blending of various literacy skills occurring while utilizing a

computer in the learning process. For example, if a student is using a word

processor to write a paper, that student is using (at least) two sets of literacy

36

skills: not only is one writing to learn as was mentioned earlier with print

literacy skills, but by using a computer word processor one is also employing

computer literacy skills to facilitate that learning.

One simple example of the first aspect of computer literacy, namely as a

user rather than a programmer, is the graphing calculator (which can be a

regular desktop computer application or integrated into a special purpose

calculating device). By using this application’s ability to instantly display the

graph of an equation and experimenting with a variety of equations,

variables and coefficients, students gain a far richer understanding of the

relationship between symbolic forms of equations and their graphical forms

than would be possible by manually graphing those equations with pencil and

paper (Dunham and Dick, 1994). Another example is the Arab-Israeli Conflict

simulation hosted by the University of Michigan’s Interactive

Communications and Simulations group. Using computers connected to the

Internet, students assume the character of a political or military leader in a

simulation of the dynamics in the Middle East, gaining a perspective on the

issues surrounding those dynamics that would not likely occur by a simple

reading of an essay or textbook (Kupperman, 2002; Scott, 1997). Additionally,

being informed by such readings is likely to enhance the student’s

performance in the simulation, thus such participation may also motivate

traditional print-based learning methods.

37

Yasmin Kafai (1996) has investigated the second aspect of ‘using

computer literacy to learn’, namely programming to learn, with children:

There are currently few opportunities for children to go beyond button-
pushing and mouse-clicking in their interaction with technology.

By asking children to program software for other children, we are
turning the tables and placing children in the active role of constructing
their own programs—and constructing new relationships with
knowledge in the process. … [T]he very process of programming game
software to teach fractions (or any other subject topic, for that matter) to
younger users allows children to engage in significant mathematical
thinking and learning. But most importantly, through programming,
children learn to express themselves in the technological domain. (p.38)

Kafai goes on to describe how this programming was taught:

A software design project starts with a simple instruction: “Design a
computer game that teaches something about fractions to younger
students.” Everything else is left open. A class of students transforms
their classroom into a game design studio for six months. During that
period, they are:

ß Learning programming;

ß Thinking about interface designs;

ß Designing graphical elements’

ß Conceiving story structures, dialogue, and characters;

ß Devising instructional strategies; and,

ß Creating fraction representations.

Another pioneer in using programming to learn is Stephan Wolfram

(2001). In an interview preceding the publication of A new kind of science he

says:

Almost all the science that's been done for the past three hundred or so
years has been based in the end on the idea that things in our universe
somehow follow rules that can be represented by traditional
mathematical equations. The basic idea that underlies A New Kind of

38

Science is that that's much too restrictive, and that in fact one should
consider the vastly more general kinds of rules that can be embodied, for
example, in computer programs.

What started my work on A New Kind of Science are the discoveries I
made about what simple computer programs can do. One might have
thought that if a program was simple it should only do simple things.
But amazingly enough, that isn't even close to correct. And in fact what
I've discovered is that some of the very simplest imaginable computer
programs can do things as complex as anything in our whole universe.
It's this point that seems to be the secret that's used all over nature to
produce the complex and intricate things we see. And understanding
this point seems to be the key to a whole new way of thinking about a lot
of very fundamental questions in science and elsewhere.

The word ‘programming’ takes on a somewhat different and more

approachable meaning here. Rather than devising complex applications for

computers to execute, computer literates instead devise simple programs

that, when run iteratively millions upon millions of times, results in a

complexity that has a striking resemblance to the complexity we find in our

scientifically studied world. The meaning of this similarity is certainly

debatable, but the fact that it cannot be dismissed out of hand implies that

perhaps the boundaries of scientific knowledge are increasing as simple

computer programs devised by students and scientists open fields of inquiry

not previously possible without them.

1.5 Computer literacy in schools

What has been established up to this point are the similarities between

print and computer literacies (reading is like using a computer, writing is like

programming a computer) and the primary difference between them: print

literacy is focused on what one says (that is, what is written), whereas

39

computer literacy is focused on what one does (that is, what is done within

the context of a computing machine). Most people’s familiarity with

computers is based on using applications: word processing; web browsing;

database entry; reading and sending e-mail; managing digital songs, digital

photos, digital movies; perhaps using instant messaging services, perhaps

creating presentations, and so forth. A kind of ad-hoc computer literacy

emerges out of the repeated use of common computer applications, reading

manuals and getting help from friends and colleagues.

So, if one is concerned about the promotion and development of

computer literacy in school settings, one might conclude that it is sufficient

for students to be given ample opportunity to use computers in order for

computer literacy concerns to be addressed. One might think: as long as

students are given plenty of assignments that require them to use computer

applications during the completion of those assignments, then they will de

facto graduate with a high enough degree of computer literacy to be able to

function in the world beyond school. Although I believe this much competence

is necessary, I also believe it is insufficient in at least a couple of ways.

First, consider if we applied the same reasoning to the teaching of print

literacy. We would then have to say it would be sufficient to give students

ample opportunities to read a variety of texts during the completion of their

assignments (recitations? – no writing allowed!) and that no written artifacts

would need to be completed to graduate with a high school diploma. Even if a

40

few students have managed to actually accomplish this feat in certain

districts across the country, I’m sure most educators would strongly feel that

such an educational system was deficient. Many reasons might be given for

this feeling, but the one most applicable in this context is that writing

completes reading. That is, when we learn to read, we enter a world where we

can learn, if not all, certainly much of what we need to learn during our

schooling, and beyond, by reading. That is to say, we learn to read in order to

read to learn. However, reading has what we might call an out-to-in vector,

meaning, the source is ‘out there’ and through the reading process, enters

into our consciousness. And this by itself results in an unbalanced, or at least

incomplete, set of learning experiences. Writing, on the other hand, can be

characterized as an in-to-out vector, meaning, the source is inside oneself

and, through the writing process, appears ‘out there’ in the world. And

through engaging in this process, another, different learning experience

occurs which cannot be gained simply by reading. We may say that after one

learns to write, one writes to learn. So when I say writing completes reading, I

mean that the path of learning that reading enables is complemented and

extended by the learning that occurs through writing. Therefore, if it is

important for students to write while in school in order to complete their

print literacy education, and if computer literacy is seen as becoming

increasingly important in daily affairs, and if programming computers is the

counterpart to writing in computer literacy, then it follows that computer

41

programming is as important to computer literacy as writing is to print

literacy. Although it isn’t quite as pithy as writing completes reading, we may

by analogy say that programming computers completes using computers and

thus constitutes an essential component of a computer literacy curriculum.

The second reason that simply using computer applications is an

insufficient strategy for promoting computer literacy in schools grows, by

analogy, out of two points made earlier with respect to print literacy, namely,

that learning to read enables one to read to learn and learning to write

enables one to write to learn. Likewise, learning to program enables one to

program to learn.4 What do we mean by ‘programming to learn’? First, what

we don’t mean in this particular context is a kind of Deweyan learning

(programming) by doing (programming). Certainly, in a formal programming

course one wants students to learn programming by doing programming, lots

of programming; however, eventually, learning to program may lead to a

state of expertise in a student where he or she begins to use those

programming skills in support of learning that is outside the context of the

programming course. What the nature of that learning actually is is

somewhat indistinct at the moment since the ubiquity of computers in schools

is both rather new and rather ‘thin’ at present. We don’t have much historical

precedent for the kinds of learning activities that ‘programming to learn’

4 For completeness’ sake, there is also the idea that learning to use computers enables one to
use computers to learn, analogous to ‘learning to read enables reading to learn.’ For an
overview of this type of learning using the World Wide Web, see Reeves (1999).

42

might entail. What we do have, though, are clues from present occupational

practices where professionals who have no specific training in computer

science program their computers to accomplish tasks germane to their

everyday work activities. And it is these kinds of programming-based

learning/tasks that we want more and more students to experience to prepare

them for the doing of those tasks, and more, when they enter the workforce.

The third reason has to do with school reform efforts. Computers per se

in the classroom do not necessarily bring about any kind of real reform to the

educational process. Semour Papert (Harel & Papert, 1991) discuss this in

Constructionism:

The need to distinguish between a first impact on education and a
deeper meaning is as real in the case of computation as in the case of
feminism. For example, one is looking at a clear case of first impact
when “computer literacy” is conceptualized as adding new content
material to a traditional curriculum. Computer-aided instruction may
seem to refer to method rather than content, but what counts as a
change in method depends on what one sees as the essential features of
the existing methods. From my perspective, CAI amplifies the rote and
authoritarian character that many critics see as manifestations of what
is most characteristic of—and most wrong with—traditional school.
Computer literacy and CAI, or indeed the use of word-processors, could
conceivably set up waves that will change school, but in themselves they
constitute very local innovations—fairly described as placing computers
in a possibly improved but essentially unchanged school. The presence
of computers begins to go beyond first impact when it alters the nature
of the learning process; for example, if it shifts the balance between
transfer of knowledge to students (whether via book, teacher, or tutorial
program is essentially irrelevant) and the production of knowledge by
students. It will have really gone beyond it if computers play a part in
mediating a change in the criteria that govern what kinds of knowledge
are valued in education.

A computer literacy that embraces computer programming is much more

likely to set up such a positive reform dynamic in the classroom than simply

43

learning to use a spreadsheet application or a computer-aided instruction

program. By its very (constructionist) nature, learning to program leads to a

‘production of knowledge by students’ and will, eventually, lead to changes in

the criteria that govern the kinds of knowledge that are valued in education.

Thus, I believe that simply using computer applications is insufficient

for bringing about a degree of computer literacy that will optimally prepare

high school students for the expectations that may greet them at home and in

the workplace with respect to computer usage. Just as we have English

courses that increase the print literacy skills of reading and writing, I believe

we should increasingly provide computer classes that offer at least

rudimentary computer programming instruction to complement and extend

the regular computer usage instruction. Furthermore, just as those writing

skills that are exercised and developed in the English classroom are then put

to use in Social Studies, History, and Science (writing to learn), the

programming skills that are developed and exercised in the Computer class

should then be put to use in the Math, Science, Art and Humanities classes

(programming to learn).

1.6 Issues surrounding the teaching of computer

programming

Given that a school district (or state department of education) has

identified the need to offer at least a minimal level of computer programming

44

in their secondary curriculum, two basic questions arise: What language

should be taught? How should it be taught?

What language should be taught?

There are many computer languages from which to choose. However,

when one examines a fair number of them, one language stands out as being

particularly appropriate for being taught as a beginning computer language:

Python.5

Python is a high level programming language that excels in clarity and

simplicity of expression allowing programmers to build their computing

solutions using human modes of thought and logic. Python was created by

Guido van Rossum in 1989 with the goal of developing a language that could

be used to teach the most advanced concepts of programming to non-

programmers. Python's mix of qualities combines flexibility with grace, logic

with clarity, directness with power, speed of development with

maintainability, and portability with scalability. Its simplicity, power, and

portability make it ideal for a wide range of applications - from simple scripts

to large and sophisticated systems. Clarity of expression makes it equally

useful for software specification and rapid prototyping. Python can also be

characterized as a hybrid language that blends procedural, object-oriented,

and functional programming paradigms, offering programmers a choice of

approachs for building each part of the solution. This enables teachers to

5 <http://www.python.org>

45

choose the paradigm they wish to emphasize in the classroom. Python is also

well documented. There are numerous books available and the Python

website has an excellent documentation section to assist the student and

teacher alike in resolving inevitable programming problems and issues.

Python is available under a non-restrictive open-source license, which

allows a school or district to download, use, modify and deploy the language

as needed. Python's large open-source community enhances the value of

Python and allows the platform to grow, without being dependent on any one

vendor. Python is also extremely portable. There are currently identical

versions available for nearly every computing platform, major and obscure,

from PDAs to mainframes. This combination of simplicity, power and

portability, along with its open-source nature, has made Python extremely

popular. Over the last decade, still under the guidance of van Rossum,

Python has grown from a small teaching project, into a programming

language that is used by major enterprises around the world, in mission-

critical applications.6

How should Python be taught?

Given that a prospective teacher has chosen to teach Python, he or she

might reasonably wonder how best to teach the language in a classroom

setting. What issues might arise, what choices will need to be made? What

sorts of programming exercises promote language acquisition? What doesn’t

6 See Python Business Forum: http://www.python-in-business.org/

46

work well? What is potentially confusing for beginning students? What are

the common mistakes? How can I, as a teacher, prepare myself for teaching

this subject matter?

The designer of the Python language, Guido van Rossum, wrote a

DARPA proposal called ‘Computer Programming for Everybody’, which

turned out to be under-funded and now survives primarily as a web site

expressing the desire of its author and adherents to make computer

programming much more accessible to everyone. Out of the initial

enthusiasm for that proposal was born the Python in Education mailing list.

When I found out about this mailing list, I realized that those messages

might be fruitfully analyzed for clues to an answer for the question posed at

the beginning of this chapter: what considerations are most important in

teaching Python as a first programming language in a secondary school

setting? All the messages are archived at the group’s website and are publicly

and freely available. In the next chapter, we take a look at what is involved

in creating a computer program, and situate the Python language in a

context of other programming languages.

47

CHAPTER 2

LEARNING PROGRAMMING

Programming is hard. It's the process of telling a bunch of
transistors to do something, where that something may be very

clear to us fuzzy humans, with all our built-in pattern matching,
language processing, and existing knowledge, but really,

horrifically, tediously difficult to communicate to a bunch of
dumb transistors. Python *is* hard, because programming is

hard. On the other hand, Python is easier than (in my
experience) C, C++, Objective C, Pascal, Postscript, Forth, Java,

Javascript, Perl, etc. In some cases it is so much easier that it
almost appears *easy* in comparison. But there is a huge

difference between *easier*, even vastly easier, and *easy*.

—Dethe Elza

2.0 Introduction
Since much of this dissertation concerns itself with computer

programming, it will prove useful to discuss both the general process of

writing a computer program and the general concerns of educators teaching

computer programming. We will begin by taking a look at what the research

literature has to say with respect to both of these in order to contextualize

our research results. We then look at the Python language itself, and at the

historical context of the newsgroup that served as the source of data.

48

2.1 Programming steps
Let’s begin with a definition of programming. Gal-Ezer and Harel (1998)

offer the following:

First, we should state clearly that we take programming here in a
rather broad sense, covering not only the coding act itself, but also the
design of the algorithms underlying the programs and, to some extent,
considerations of correctness and efficiency. To some, this interpretation
of programming might be the obvious one to adopt, but experience
shows the point ought to be made more explicitly. (p. 82)

We will see throughout this dissertation examples of how programming is

more than just writing code. There are several other cognitive skills involved

ranging from conceptualizing the problem, to creating a viable algorithm, to

expressing thay algorithm to the computer and to humans, to eradicating the

inevitable ‘bugs’ that occur in the code. We will see how programming is a

form of writing with its own, related set of difficulties and challenges. In this

section, we discuss the five major steps associated with creating a working

computer program.

In a review of literature of teaching high school computer programming,

Taylor (1991) identified five interrelated steps taken in the creation of a

functional computer program:

1. Problem definition
2. Algorithm design
3. Code writing
4. Debugging
5. Documentation

It should be kept in mind that although there may be a general flow

from first to last while creating a program, there is often much cycling back

49

and forth between steps. This is especially true, for example, with the

documentation step often occurs hand-in-hand with the code writing step,

and even during the algorithm design step.

Problem Definition
Another way of expressing this concept is ‘product specification’. The

student/programmer needs to understand what functionality the program is

expected to have. Usually this means identifying the inputs to the problem,

the likely components of the solution (if not explicitly specified), and the

outputs that either solve the problem or meet the product specifications. In a

beginning programming class, the initial problem statement is likely to come

from the teacher, however, later on, students may be asked to submit their

own natural language description of the proposed product.

Algorithm Design
Algorithm design results from algorithmic thinking. Algorithmic

thinking includes:

functional decomposition, repetition (iteration and/or recursion), basic
data organizations (record, array, list), generalization and
parameterization, algorithm vs. program, top-down design, and
refinement. Note also that some types of algorithmic thinking do not
necessarily require the use or understanding of sophisticated
mathematics. The role of programming … is a specific instantiation of
algorithmic thinking. (National Research Council, 1999)

Note that ‘algorithm’ does not necessarily mean the same as ‘program’! The

same report emphasizes this:

For example, one difference between an algorithm and a program is that
the algorithm embodies the basic structural features of the computation

50

independently of the details of implementation, whereas a program
commits to a specific set of details to solve a particular problem.
Understanding this interrelationship is basic programming, but the
principle applies throughout life. … One observes that a solution
technique (corresponding to the algorithm) can be used in different
problem situations (corresponding to the programs). Inversely, one
expects that a successful problem solution embodies a more general
process that is independent of the situational specifics.

Using algorithms and doing algorithmic thinking is something we do

everyday but not necessarily in the context of using a computer.

Understanding algorithms and algorithmic thinking means realizing that the

machine receiving the algorithm does not understand the way a human

understands:

An algorithm is a formula or set of steps for solving a particular
problem. To be an algorithm, a set of rules must be unambiguous and
have a clear stopping point. Algorithms can be expressed in any
language, from natural languages like English or French to
programming languages. …

So the secret is to clearly spell out the rules. The act of breaking down a
complex problem into small chunks and then breaking it further into
very simple tasks is the essence of programming and is a crucial skill in
math, science, and design. ...

To think through the sequence of a task, you will need to identify the
start point, what decisions will need to be made, what will influence
those decisions, what will result from those decisions, and when you will
consider the task complete. ...

When communicating with people, most of the assumptions are clear
but when you are programming, the computer doesn't have any
"common sense". You will need to spell it all out in a very clear
sequence.7

With this top-down design style the programmer divides a problem into

smaller sub-tasks, describes a technique for accomplishing each sub-task, and

7 http://www.roboeducators.org/downloads/prog%20inst/Algorithmic%20Think.doc

51

shows how each sub-task solution contributes to solving the overall problem.

For large projects, this is often an iterative process where each sub-task can

be further subdivided into sub-sub-tasks, and so on. Beginners usually have

the most difficulty breaking the overall problem into specific sub-tasks

(Ingram, 1988).

The top-down design style was more strongly emphasized in the past

when the languages used were compiled rather than interpreted (these terms

will be discussed more fully later this chapter), and interaction with the

computer was both ‘scarce’ and ‘expensive’, both in terms of costs and time.

However, with the rise of interpreted languages and the apparent ubiquity of

personal computers, interactions with the computer become both plentiful

and cheap. Thus, especially for smaller problems (and especially with certain

languages), some researchers advocate a more freeform or interactive style of

algorithm design. Thus bottom-up algorithm design involves rapid, iterative

cycles of testing and refining hypotheses in the interpreter to find code that

works as expected, and building up, procedure by procedure, module by

module, a working program in the absence of any written algorithm

specification. Alternatively, bottom-up and top-down can work together,

sequentially:

Early research has identified that students employ different strategies
in programming tasks. Often two categories are used, usually reflecting
variations on a top-down vs. bottom-up dichotomy. The top-down,
analytic style is often associated with more proficiency. However,
students often combine the styles and some benefit from being allowed

52

to “tinker” in a bottom-up manner at first before planning in a top-down
manner. (Clements, 1999)

 Whichever style of designing is used, the expectation is strong that each

procedure and module created is documented (commented) in the body of the

code so that human readers of the code can understand what the algorithm is

and how it is done.

Templates and patterns
Beginning programmers have not developed any sort of algorithmic

repertoire, that is, they don’t yet have the experience that would enable them

to quickly ascertain which algorithms to apply to a given problem. Students

find it very helpful to be shown algorithmic ‘templates’ or patterns that they

can use in their problem solving. Templates are stereotypical sequences of

computer instructions represented as code, pseudocode, or natural language

descriptions. As code, templates are short programs that express specific

algorithms that the students can quickly use and modify for their own

purposes. They are abstractions at a higher level than specific language

features (syntax), and offer students reasonable suggestions for how to

proceed in their programming efforts. Linn (1985) found that experienced,

successful teachers explicitly taught good, well-organized templates to their

students.

Working in teams
In the workplace, programmers rarely work alone, and researchers have

found that students perform better in teams:

53

Contrary to a popular view of programmers held by nonprofessionals,
strong beneficial effects of computer programming have been reported in
the area of social and emotional development. Teachers report that
students exposed to computer programming are more likely to interact
with their peers. They engage in group problem solving, sharing, and
acknowledging expertise and creative thinking. Social isolates benefit
the most. Children are eager to cooperate and share what they have
learned with others. Thus, computer-programming environments can
facilitate social interaction and positively focus that interaction on
learning. (Clements, 1999)

Especially when they are expected to present their work to their peers,

for example, in a structured walk-through, they spend more time planning

their programs, write more eloquent programs, and generally have a more

positive attitude towards programming (MacGregor, 1988). Better programs

also resulted when students participated in group discussions during the

planning phase (Webb, 1986). This is where real development of algorithmic

thinking can develop as students verbally hash out the ‘what, when, where,

how and why’ details of their code.

Importance of planning and describing the algorithm
Many writers expressed the importance of planning before coding.

Leavens, et al (1998) are especially keen on this because of its consequences

for evaluation. They stress that programming is much more like writing than

calculating:

To an outside observer (who is not a practicing mathematician or
computer scientist), programming seems similar to solving a specific
numerical problem. Memories of fundamental arithmetic may lead one
to believe that the process of getting the answer is not as important as
the answer. Nothing could be further from the truth.

Writing a program is not at all like finding an answer to a specific
instance of a numerical problem (e.g., multiplying 3 and 4). The

54

programmer does not solve a specific problem instance (e.g., multiply 3
and 4 and produce 12). Instead, a programmer’s task is to write a set of
unambiguous instructions for a computer that can solve a whole class of
problem instances (for example, acting as a calculator). If only one
instance of a problem is to be solved, then it is not cost-effective to write
a program. (Leavens, et al, 1998)

Consistent with this idea of writing, they go on to emphasize that the

program is written as much for other humans as it is for the machine:

Although programs are a means to instruct a computer, humans have to
read them as well. Indeed, in the software industry, the human readers
of a program are just as important as the machine. This is critical for
several reasons:

• Programs are often written in teams, and team members need to
understand each other’s code and procedures.
• Debugging a program (correcting errors) also requires reading. Here
the reader is often the program’s author; the difficulty of finding bugs in
a program shows the difficulty in reading programs carefully. Even the
program’s own author will have difficulty in reading a program that is
unclear, poorly organized, or poorly documented.
• Programs are often read during “code walkthroughs.” Here the
readers are programmers other than the program’s author, who read the
program carefully to validate its correctness.
• Programs are read by “reusers,” people who wish to use or adapt the
code for another purpose.
• Perhaps the most important reader of a program is the maintenance
programmer. This is, very often, a different person than the program’s
author. The maintenance programmer has to understand a program to
fix or enhance its functionality, in case the author of the program is not
available to answer questions. (Leavens, et al, 1998)

And of course, in the classroom, the instructor must read the programs too:

When students know that their programs will be read carefully by a TA,
and graded on the quality factors that reflect advance planning (clarity,
organization, documentation, and test or verification plans) they are
pressured to think and plan before they begin to write code. In such a
situation, correcting students who fall into the “generate and test”
pattern is much easier, because the grading system emphasizes and
reinforces the value of advance planning. In addition, because the
students are more involved with the writing of their programs, they

55

learn more and increase their understanding as the programming
assignments become more complex. (Leavens, et al, 1998)

So programmers have the dual responsibility of writing both for the machine

and for human readers who need to understand in natural language what the

machine is being instructed to do. Careful planning can ensure that the

proper communication occurs to both sets of ‘readers’ of the program.

Code Writing
At this point the programmer understands the problem, has divided it

into subtasks and has written an algorithm describing how to accomplish

each subtask. Now, each algorithm must be coded in the chosen programming

language. What knowledge is needed for this to occur?

Three types of programming knowledge
Researchers have identified three types of programming knowledge:

syntactic, conceptual and strategic. Syntactic knowledge refers to knowledge

of the language’s grammar, for example, the use of white-space indentation

for code blocks, how to call a ‘for’ loop (>>> for item in list:), or which brackets

to use for lists and dictionaries ([] and {}, respectively) in the Python

language. Syntactic knowledge alone is not sufficient to write a working

program; it must be accompanied by a sound understanding of the

programming principles necessary to develop logically correct programs.

Conceptual knowledge involves understanding the semantics of the

language, and the development of design skills and mental models necessary

to create working programs. This is knowledge that transfers to other

56

languages when necessary. For example, almost all languages have some

kind of looping mechanism. Understanding that a ‘for’ loop iterates over each

item in a sequence, and how to use it in the expression of an algorithm is an

example of conceptual knowledge. Conceptual knowledge also facilitates

combining language features in program design; for example, one begins to

understand when to use a list inside a dictionary to store program data.

Conceptual knowledge entails a full understanding of the semantics of

syntactic constructs and the ways they can be combined to solve a problem.

Strategic knowledge uses syntactic and conceptual knowledge in the

most appropriate and effective way in the service of solving novel

programming problems. It is essential for recognizing that a problem can be

solved and for identifying appropriate techniques for doing so. For example, if

one is programming a wiki server8, strategic knowledge informs the

programmer that a state machine9 is necessary to process the text rather

than, say, a regular expression.10

8 The term WikiWiki (which means “quick” in Hawaiian) can be used to identify either a type
of hypertext document or the software used to write it. Often called “wiki” for short, a wiki is
a collaboratively written website. A user may contribute or alter content without those
efforts being reviewed prior to its inclusion.
<http://www.infoanarchy.org/wiki/wiki.pl?Wiki>)

9 “A finite state machine (FSM) or finite state automaton (FSA) is an abstract machine used
in the study of computation and languages that has only a finite, constant amount of memory
(the states). It can be conceptualized as a directed graph. There are a finite number of states,
and each state has transitions to zero or more states.”
<http://en.wikipedia.org/wiki/Finite_state_automaton>

10 “A way of describing a pattern in text - for example, ‘all the words that begin with the
letter A’ or ‘every 10-digit phone number’ or even ‘Every sentence with two commas in it, and
no capital letter Q.’”
<http://www.deserve-it.com/manual/glossary.html>

57

These programming knowledge distinctions are important for

highlighting deficiencies in the types of knowledge acquired in many

introductory programming courses. McGill and Volet (1997) report that:

A close examination of the nature of the knowledge acquired by students
who did not reach the desired level of achievement indicates that they
did acquire some syntactic knowledge, but failed to develop conceptual
and strategic knowledge (Linn, 1985). This outcome is quite consistent
with the emphasis that has been typically placed on the acquisition of
syntactic knowledge in introductory classes and many introductory
textbooks. (p. 3)

Conversely, the same authors report that when conceptual models of a

language are emphasized during instruction, problem solving performance

(strategic knowledge) is enhanced, and also that problem solving performance

is strongly related to measures of conceptual knowledge (Bayman & Mayer,

1988).

The importance of all three types of knowledge can be understood in

another way. During the Middle Ages the foundation for higher learning,

known as the quadrivium (arithmetic, astronomy, geometry, and music), was

the trivium and consisted of three parts: grammar, dialectic (logic and

disputation), and rhetoric, each of which was mastered in sequence according

to one’s developmental age. Grammar, of course, corresponds with syntactic

knowledge, dialectic with procedural, and rhetoric with strategic. Dorothy

Sayers (1948), in a wonderful essay called “The lost tools of learning”

emphasizes that the purpose of the trivium was not learning subjects per se,

but rather learning how to learn (so as to know how to learn the subjects in

the quadrivium):

58

Taken by and large, the great difference of emphasis between the two
conceptions holds good: modern education concentrates on teaching
subjects, leaving the method of thinking, arguing and expressing one's
conclusions to be picked up by the scholar as he goes along; mediaeval
education concentrated on first forging and learning to handle the tools
of learning, using whatever subject came handy as a piece of material on
which to doodle until the use of the tool became second nature. ...

For the tools of learning are the same, in any and every subject; and the
person who knows how to use them will, at any age, get the mastery of a
new subject in half the time and with a quarter of the effort expended by
the person who has not the tools at his command. To learn six subjects
without remembering how they were learnt does nothing to ease the
approach to a seventh; to have learnt and remembered the art of
learning makes the approach to every subject an open door.

This maps quite well to our conception of learning computer programming:

the purpose is not to program a specific application per se, but rather learning

how to program for its utility in other endeavors.

Having identified these three types of programming knowledge, we turn

to an examination of three types of cognitive knowledge, and then to a

synthesis of the two.

Three types of cognitive knowledge
Cognitive psychology has long distinguished among different forms of

knowledge. Usually, these fall into three broad areas: declarative, procedural,

and conditional.

Declarative knowledge is knowledge about something, normally

expressed as facts, concepts or principles. For example, knowing that the

circumference of a circle is equal to twice its radius times pi is a form of

declarative knowledge. One important aspect of declarative knowledge is that

it is typically expressed through language.

59

Procedural knowledge is the active use of declarative knowledge. It is

commonly defined as the knowledge of ‘how to’ do something. Procedural

knowledge is demonstrated in action rather than being spoken about or

written about. Nevertheless, even though we can refer to these two forms of

knowledge separately, they are seldom found in isolation from each other.

Conditional knowledge is knowing when, where and why to apply

procedural and declarative knowledge to a given situation (Paris et al., 1983).

It is knowing under which conditions a particular strategy is important,

when and where to use that strategy, and how to evaluate its effectiveness.

McGill and Volet (1997) note the similarity between the three types of

programming knowledge and three kinds of cognitive knowledge and combine

them into a two-dimensional conceptual framework of the various

components of programming knowledge.

Knowledge framework for teaching programming
The first two components of each knowledge domain, syntactic and

conceptual, and declarative and procedural, are not considered isomorphic

but rather orthogonal. However, strategic knowledge and conditional

knowledge are considered essentially equivalent:

A two-dimensional model of the various components of programming
knowledge distinguishes among four interrelated but conceptually
distinct forms of programming knowledge. The four categories of
knowledge are declarative-syntactic, declarative-conceptual, procedural-
syntactic, and procedural-conceptual. It is assumed that together these
knowledge categories form the basis of programming knowledge. The
ability to know why, how, where, and when this knowledge can be used
appropriately leads to a conceptually distinct higher form of knowledge

60

called strategic or conditional. Strategic/conditional knowledge refers to
the ability to integrate and orchestrate the use of all other forms of
knowledge. This higher level of knowledge development is achieved
when an individual is able to use procedural knowledge (syntactic and
conceptual) flexibly and appropriately across novel situations and tasks
in a way that is syntactically correct and that reflects a sound
understanding of the semantics of the actions executed by the program
(declarative-conceptual) (McGill and Volet, 1997, p. 7).

Table 3 Components of programming knowledge

Declarative Knowledge Procedural Knowledge

Syntactic Knowledge Knowledge of syntactic
facts related to a
particular language,
such as:
• knowing that a colon
must follow a function
definition
• knowing the
difference between a
function and a method

Ability to apply rules of
syntax when
programming, such as:
• the ability to write a
syntactically correct
class definition
• the ability to read
from and write to a text
file on the local file
system

Conceptual Knowledge Understanding of and
ability to explain the
semantics of the actions
that take place as a
program executes, such
as:
• the ability to explain
how a particular loop
exits
• the ability to explain
how to import a module
and call one of its
functions

Ability to design
solutions to
programming problems,
such as:
• the ability to design a
function that computes
the mean, median and
mode of some data
• the ability to modify a
program that returns a
1-D array to return a 2-
D array

61

Their table is reproduced (modified with examples from Python instead

of the original Pascal and Basic examples; see Table 3). It presents the

conceptual framework of the various components of programming knowledge,

with some examples within each category.

Declarative-syntactic knowledge
McGill and Volet describe this category of knowledge as facts about a

particular programming language’s syntax that are typically introduced at

the beginning of an introductory programming course. Conceptual

understanding of programming is not assumed, nor is the ability to use those

facts in a program. This knowledge is usually presented in lectures or learned

from books.

Declarative-conceptual knowledge
This category is described as representing an understanding of and

ability to explain the meaning of the actions that take place as a program

executes. It differs from both types of procedural knowledge in that knowing

the semantics does not mean that a student can actually apply those actions

in a working program. Students may be able to explain how a particular part

of a program performs, but they do not necessarily access that knowledge

when writing their own programs. This kind of knowledge can be taught in

lectures or tutorials, or by observing programs in action.

62

Procedural-syntactic knowledge
This category of knowledge refers to the ability to apply rules of syntax

when programming, according to McGill and Volet. This form of knowledge is

usually emphasized while doing programming exercises during laboratories.

However, having this kind of knowledge does not ensure semantic

understanding, that is, a student may know that a particular form is correct,

but may not know exactly what the form is doing.

Procedural-conceptual knowledge
This category refers to the ability to use semantic knowledge to write

programs. Unfortunately, this type of knowledge is often not taught

explicitly; instead students are expected to acquire it as a result of the

declarative knowledge presented in lectures and tutorials and their

experiences undertaking hands-on programming exercises.

Strategic/conditional knowledge
Finally, according to McGill and Volet, the synthesis of the four other

kinds of knowledge results in the ability to use syntactic and conceptual

knowledge effectively to design, code and test a program that solves a novel

problem. Furthermore, the programmer is also able to explain the semantics

of the actions executed by the program; hence, he or she possesses both

declarative and procedural knowledge.

This framework of the components of programming knowledge is

extremely useful when designing or evaluating a programming class. Usually

introductory programming classes tend to emphasize syntactic constructs,

63

and neglect explicitly developing procedural-conceptual knowledge. However,

studies show that emphasizing procedural-conceptual and

strategic/conditional knowledge results in increased levels of student

understanding and achievement (Bayman & Mayer, 1988; McGill & Volet,

1997). For example, McGill and Volet studied the effect of an instructional

package consisting of 1) an interactive teaching approach involving modeling,

coaching, and collaborative learning, and 2) an emphasis on the student use

of a planning strategy for algorithm development and programming:

The results of this study suggest that an instructional approach that
emphasizes the development and use of a planning strategy for
algorithm development in conjunction with modeling, coaching, and
collaborative-learning activities can have positive effects on students’
development of introductory programming knowledge.

... Although control students were introduced to the same amount of
declarative knowledge in lectures and given the same opportunities to
develop procedural knowledge through the completion of practical
exercises in tutorials, their development of strategic/conditional
knowledge was not guided by structured interactive-modeling and
cognitive-coaching instruction. These results support Oliver’s (1993)
assertion that computing educators should give attention not only to the
mode of delivery but also to the use of appropriate rehearsal and
consolidation learning activities. (p. 12)

One way to ensure that emphasis is the liberal use of annotated

templates and patterns as canonical examples, as described earlier. Another

way is by providing detailed feedback: “writing comments on completed

assignments, returning assignments promptly, explaining to small groups or

individuals how to improve programs, providing a solution to the

assignments, and describing different ways the assignment could have been

solved.” (Linn, 1987, 486-87; in Taylor, 1991, 31)

64

Debugging
After a program is written, it is rare for it to run successfully the first

time. Usually there are errors, called ‘bugs’ that need to be corrected. This

process is called debugging, and is often tedious and difficult. Pea (1986)

identified three classes of bugs, or misunderstandings that arose from

students reverting to natural language rules when their understanding of

computer language rules was faulty or incomplete:

The ‘parallelism bug’ assumed that several lines of code in a program
could be active at the same time, just like a human could process several
lines of a conversation at one time. The ‘intentionality bug’ assumed
that the computer could look ahead, or anticipate, what would happen
in the program. The ‘egocentrism bug’ assumed the computer could fill
in or supply parts of code that the student had left out, similar to the
way a human could interpret what was meant from what was said. (in
Taylor, 1991, 20)

As students become more proficient in their coding, these anthropomorphic

mistakes become much less common, but are replaced with both syntactical

errors and logical errors.

A programming environment refers to the software applications that are

used to create other software applications. At minimum, this would consist of

a text editor and the programming language itself. Most modern

programming environments include specialized text editors that greatly

reduce the occurrence of syntactical errors by highlighting them as they are

typed (much as word processors highlight misspelled words). Language

interpreters can also easily catch syntactical errors when code is run and

report which line or which command is erroneous. However, it is much more

65

difficult to eradicate bugs that result from logical errors where the code will

run but the output is wrong. Again, most modern programming environments

include debuggers which slow down code execution to run step by step so the

programmer can see where the execution flow is occurring at any given

instant, and what the values of the variables are at that instant. Debuggers

help programmers visualize static code as a dynamic computational structure

at execution time.

Particular sources of bugs for beginning programmers include using the

equality symbol (=), knowing the value of a dynamic variable, controlling

loops, using conditional constructs (if, then, else) and knowing the functional

difference between ‘print’ and ‘return’. Suggestions for reducing the

occurrence of these and other bugs include: 1) encourage analogical reasoning

by presenting new concepts using a variety of examples so that students are

less likely to associate a procedure with only one type of problem; 2)

emphasize the strict flow of control the computer adheres to–only one line of

code is executed at a time, only current values of variables are applicable at

one instant, and the computer neither remembers what has occurred (unless

explicitly told to) nor anticipates what is to come; and 3) stress the

mechanical aspect of controlling a machine through language

commands–although humans can interpret remarks, fill in gaps and repair

ambiguities based on a shared social background, computers can only

66

interpret instructions based on a mechanical process defined by the rigid

rules of the language (Taylor, 1991).

Documentation
As has been mentioned several times already, programming is more

than just issuing instructions to the computer. If code is to be maintained or

extended or reused or modified or evaluated (say, by the teacher) in any way,

what the program is doing needs to be documented in some way. Abelson and

Sussman (1996) emphasize this in the preface to their Structure and

Interpretation of Computer Programs:

First, we want to establish the idea that a computer language is not just
a way of getting a computer to perform operations but rather that it is a
novel formal medium for expressing ideas about methodology. Thus,
programs must be written for people to read, and only incidentally for
machines to execute.

This is echoed by Moglen (1999) in his discussion of open source software:

The function of source code in relation to other human beings is not
widely grasped by non-programmers, who tend to think of computer
programs as incomprehensible. They would be surprised to learn that
the bulk of information contained in most programs is, from the point of
view of the compiler or other language processor, "comment," that is,
non-functional material. The comments, of course, are addressed to
others who may need to fix a problem or to alter or enhance the
program's operation. In most programming languages, far more space is
spent in telling people what the program does than in telling the
computer how to do it.

There are several strategies for accomplishing this documenting

function. Perhaps the most common is embedding comments in the code that

are meant for human readers and ignored by the computer. These comments

are meant to document what the code does (for example, the expected inputs

67

and outputs), how it is to be used, and how it accomplishes what it does (that

is, an explanation of how the algorithm works). The advantage of this

strategy is that it encourages (nearly) simultaneous coding and documenting,

since they coexist in the same source file. Also, comments can be placed

exactly in the code where the explanation pertains.

The importance of documentation in large programming projects is

emphasized on the ‘literate programming’ page;11 several quotes here give a

flavor of the thinking:

The structure of a software program may be thought of as a "WEB" that
is made up of many interconnected pieces. To document such a program
we want to explain each individual part of the web and how it relates to
its neighbors. –Donald Knuth

A traditional computer program consists of a text file containing
program code. Scattered in amongst the program code are comments
which describe the various parts of the code.

In literate programming the emphasis is reversed. Instead of writing
code containing documentation, the literate programmer writes
documentation containing code. –Ross Williams

Of course, it is important to point out that comments are not an end
unto themselves. As Kernighan and Plauger point out in their excellent
book, The Elements of Program Style, good comments cannot substitute
for bad code. However, it is not clear that good code can substitute for
comments. That is, I do not agree that it is unnecessary for comments to
accompany "good" code. The code obviously tells us what the program is
doing, but the comments are often necessary for us to understand why
the programmer has used those particular instructions. –Edward
Yourdon

Unit tests are also documentation. The unit tests show how to create the
objects, how to exercise the objects, and what the objects will do. This
documentation, like the acceptance tests belonging to the customer, has

11 <http://www.literateprogramming.com/>

68

the advantage that it is executable. The tests don't say what we think
the code does: they show what the code actually does. –Ron Jefferies

As I gradually improved my in-code documentation, I realized that
English is a natural language, but computer languages, regardless of
how well we use them, are still "code." Communication via natural
language is a relatively quick and efficient process. Not so with
computer languages: They must be "decoded" for efficient human
understanding. –David Zokaities

However, becoming proficient at both coding and documenting is rather more

challenging than simply coding alone:

There are a few issues limiting its [literate programming's] popularity.

One of the core ideas is to write a piece of documentation that is a cross
between a well-written essay and concrete detail documentation. The
problem here is that not many people write well enough to achieve even
the essay and even fewer can effectively combine that with detail docs.
The writing skills need to be augmented by knowledge of the markup
language (usually TeX). And the writer needs to know the programming
language being used. And the programmer needs to be skillful enough to
write a program in disconnected fragments that still makes sense and
can be debugged after re-assembly.

Donald Knuth is one person who has all of these skills and can apply
them all at the same time. In contrast, the average Joe is lucky to have
even a few of the skills, much less being able to apply them all at the
same time. It is rarer still to find teams where all of the programmers
can read and write in a literate style.12 –Raymond Hettinger

Thus, even if literate programming techniques per se are not adopted in the

curriculum, it still remains beneficial for beginning programmers to be

encouraged or required to include detailed comments in their code both for

evaluation purposes and for future ease of maintenance purposes.

12 <http://mail.python.org/pipermail/python-list/2003-June/166476.html>

69

2.2 Teaching Programming
In the previous section we explored the process of writing a working

program, which consisted of defining the problem, designing an algorithm to

solve the problem, converting the algorithm into code, debugging the code to

run as error-free as possible, and throughout the process, documenting, in

natural language, descriptions of what the program is doing and explanations

of how it is doing it. In this section we address the question of how teachers

can foster the learning of programming by their students, and explore the

cognitive effects of learning programming beyond the learning of the

language itself.

Programming not only for computer science majors
The foundational premise of the edu-sig newsgroup, from which this

dissertation data is taken, is that everybody, not just students and

practitioners of computer science, can do computer programming. (I will

address certain caveats about the term ‘everybody’ later in this chapter.) This

is analogous to the claim that everybody, not just professional writers, can

write in his or her native language. Figgins (2000), in an interesting extended

metaphor between hacking and tracking, puts it this way:

The goal of literacy was not to make everyone a professional writer, but
to allow people to understand the writings of others and enable them to
write simple documents of their own.

You may never write a novel, or even a short story, but with basic
literacy, you can communicate your thoughts. The rise in literacy helped
make the Renaissance possible. It changed how we view the world so
much that people in the Middle Ages could not have predicted the
Renaissance; they had no idea what the future would hold.

70

We don't yet know what the result of general programming literacy
would be, but van Rossum believes that it could be just as big of a
change as was brought about by general literacy. Now that there's a
computer on every desk, can we now make everyone literate in how to
write simple programs? ... This is really about freedom. Just as the rise
in general literacy brought about an emancipation of ideas in the
Renaissance, a rise in programming literacy might also free us to
explore a world where computers are becoming ubiquitous—embedded
in many of the tools that surround us daily. Literacy in the Information
Age will mean computing literacy, and knowing how to program.

The ‘tracking’ half of Figgins’ metaphor implies knowing a vast amount of

information about the physical environment; it is “a complex art that engages

all the senses, ... a demanding skill that involves mental acuteness, craft and

concentration.” Because of the quality of their immersion in the natural

world, tribal people have “a huge incentive to teach their children as much as

they can about the plants and animals that surround them, how they

interact, and how they can learn from them.” So what might this have to do

with programming?

With the rise of the Internet, there is a new wilderness—a new ecology
made from the interactions of billions of communications from billions of
devices. They are being woven together in a web that is just as
complicated as the web of life. And our success as individuals, as a
culture, is going to depend on our ability to understand and manipulate
that environment. ... Away from the tame, the known, the village, the
city, hackers and trackers understand what makes things tick. They
know how to read the environment, manipulate it, and stretch this
awareness as far as they can, to adapt and use whatever is presented to
them. ... A long unused area of our brains is beginning to come alive. It
is the art of the tracker that is reemerging in the art of the hacker. In
the network we once again have a rich medium for this art. And we have
a compelling reason to learn, because those most successful at
manipulating the medium will be the most successful at survival.

Thus, teachers are implicitly encouraged to intercalate computer

programming into their curriculum, or offer classes specifically designed to

71

teach beginning programming to all interested students, because it may

increasingly become a necessary survival skill in our modern culture, similar

to the way knowing how to read and write is now; the way tracking used to be

(and still is for tribal cultures).

We will see that participants in the edu-sig newsgroup often noted the

difference between teaching programming in a programming class, and using

programming in another subject. This dichotomy appears to be ingrained in

the computer science field. Gal-Ezer and Harel (1998), in an article

concerning what material should be included in a course for computer science

educators, note that:

the unique nature of CS, with its special algorithmic way of thinking
and extremely short history, has led to a diversity of opinions about its
very substance. As an example, here are two strikingly conflicting
quotes by two prominent computer scientists:

Computer science has such intimate relations with so many other
subjects that it is hard to see it as a thing in itself.
–M.L. Minsky, 1979

Computer science differs from the known sciences so deeply that
it has to be viewed as a new species among the sciences.
–J. Hartmanis, 1994
(p. 79)

We will see both viewpoints played out not only in the expressed views of the

posters but also in the two primary contexts in which programming is

incorporated into existing school curricula. This may also contribute to the

dearth of formal curriculum materials for teaching Python programming:

uncertainty about audience. An author of a programming lesson plan may

72

well wonder if it is meant to be used specifically in a programming course, or

in another subject area.

There are of course other reasons for this dearth: the relative newness of

the Python language (vis-à-vis LOGO or BASIC), the low penetration of

general programming courses in school curricula, the absence of general

programming benchmarks in state standards, the focus of existing materials

on AP computer science, and the perceived lack of market opportunity by

large publishing houses. However, if we look back at the comparison of

programming with writing, we can anticipate that curriculum materials will

be more readily accepted if they target the beginning, non-CS programming

course, and indeed, we see many references to such materials available on

the web by the edu-sig posters; see Appendix B for some suggestions.

However, programming materials targeting specific subjects, especially

Mathematics, are also available and can be incorporated into a general

programming course as well as the specific subject area. Also, the relative

lack of curriculum materials represents an opportunity for a creative

educator to develop his or her own materials, and to share them with other

interested teachers via the Internet. Indeed, these are two of the foundational

goals of CP4E (#1 & #3):

1. To develop a high school and college curriculum
2. To create better tools for program development
3. To build a user community around these tools to help with their

development

73

Connectionist teaching
This lack of curriculum material represents an opportunity in another

sense: a chance for a teacher to change his or her perspective on what it

means to teach. Yuen (2000), in a study of computer programming

instructors, described two different worldviews of the nature of the mind:

Over the years, two predominant computational theories of mind have
emerged from the study of artificial intelligence (AI), namely, the
symbolic model fashioned after the digital computer, and the
connectionist model modeled after the human brain (Korf, 1991). ...

In the symbolic model, concepts are represented by symbols, knowledge
is conceived of as objects in individual minds (Bereiter & Scardamalia,
1996). Learning in such mind-as-container metaphor is a linear
problem-solving process, in which symbols are manipulated in a
sequence of steps in two directions, forward from a set of givens or
backward from a goal. This metaphor suggests that when we learn
something, there is a sentence in our head representing that knowledge
(Strauss & Quinn, 1997).

In [connectionist] models, knowledge is not represented by symbols
linked together in sentences, but by simple processing units arranged in
layers. An artificial neural network consists of a very large number of
individual elements (processing units), modeled after neurons, each
connected to a large number of neighboring elements, and each
computing a very simple function, such as a weighted sum of its inputs.
Connectionist models presume that cognitive functioning can be
explained by collections of processing units that operate in this way.
Concepts to be learned in connectionist systems are represented as
patterns of activity over a set of processing units. Propositions are
represented by patterns of activation over many units.

Most teachers take knowledge as objects and treat understanding as a
characteristic of something in students' minds. These pedagogical
assumptions are fully consistent with the mind-as-container metaphor.

Yuen goes on to explain how the connectionist model offers a more

“enlightened” theory than the symbolic model:

The connectionist view of understanding is based on commonsense
criteria. First of all, there is no privileged way that ought to be expected

74

of student. In judging a student's understanding of x, the following
criteria are applied: (a) how intelligently the person acts with respect to
x, (b) his or her ability to explain whatever is judged to be in need of
explaining in x, and (c) awareness of and interest in doing something
about shortcomings of the first two criteria. An immediate benefit of this
approach to understanding is that `it permits liberality without total
collapse into relativism' (Bereiter & Scardamalia, 1996, p. 499).

The “Connectionism” entry in the Stanford Encyclopedia of Philosophy13 has

an excellent discussion of the differences between connectionism and

symbolic processing. It is important to stress that there is not necessarily an

either/or choice between connectionism and symbolic processing. The

Encyclopedia says:

However many connectionists do not view their work as a challenge to
classicism [symbolic processing] and some overtly support the classical
picture. So-called implementational connectionists seek an
accommodation between the two paradigms. They hold that the brain's
net implements a symbolic processor. True, the mind is a neural net; but
it is also a symbolic processor at a higher and more abstract level of
description. So the role for connectionist research according to the
implementationalist is to discover how the machinery needed for
symbolic processing can be forged from neural network materials, so
that classical processing can be reduced to the neural network account.

I believe it is important for all teachers, including those who teach computer

programming, to keep this accommodation between connectionism and

symbolic processing in mind, and to maintain a balance of the two views as

they teach.

Yuen, after describing his research with computer science instructors,

lists the deep, endemic problems they face, and offers four guidelines for how

connectionist theory can help alleviate the situation. These suggestions are

13 <http://plato.stanford.edu/entries/connectionism/>

75

primarily designed to change teachers’ perspectives on what it is they are

doing. His first recommendation concerns the teacher’s focus:

Given time, resource constraints, students' low ability and motivation,
as well as complicated subject content, teachers fell into the dichotomies
of whether to stick to the syllabus or to shift to the interesting and lively
presentation materials; whether to focus on the public examination or to
cultivate students' logical thinking ability; whether to adopt short-term
survival teaching or to provide long-term quality instruction. All
problems are deep-rooted. `In the connectionist view of mind, there is no
mental content to talk about. There are only abilities and dispositions'
(Bereiter & Scardamalia, 1996, p. 499). The first pedagogical change,
supported by the research in the 1980s, is to adopt a specific teaching
focus, a focus geared towards the cognitive development of students, for
computer programming. The content should go beyond the public
examination syllabus, and emphasize thinking processes and transfer of
learning.

We will see this as an implicit characteristic of the postings in the edu-sig

newsgroup. The “public examination syllabus” as such is left to the AP

classes and the AP exam. Computer programming for everybody is still too

new to have been codified into benchmarks, thus teachers so inclined can

more easily adopt this connectionist teaching strategy.

Yuen’s second recommendation concerns the shift from subject-centered

to student-centered teaching:

Knowledge cannot simply be transferred by means of words, and
learning is the product of self-organization (von Glasersfeld, 1998). A
connectionist mind is a self-organizing mind. Thus the second
pedagogical change is to move the transmission-oriented pedagogy
(teacher-dominated or subject-centered) to student-centered and self-
organizing learning. Traditionally, teacher-dominated or subject-
centered methods refer to the use of learning activities which typically
involve direct teacher involvement, participation and interaction with
pupils, in which, through the use of informing, describing, explaining,
questioning, modeling, demonstrating, and coaching, the teacher
transmits the knowledge, understanding, skills and attitudes that he or
she wishes to develop (Kyriacou, 1995). This teaching-as-telling method

76

is never, on its own, sufficient to ensure deep understanding. However,
the student-centered approach builds on the idea that students learn
best when engrossed in the topic and motivated to seek out new
knowledge and skills because they need them in order to solve the
problem at hand (Norman & Spohrer, 1996; emphasis added).

We will see near unanimous support of this pedagogical strategy by the

newsgroup participants. Consistently and repeatedly the posters emphasized

their recommendation that students be allowed to pursue programming

problems that piqued their own interests. This does not necessarily obviate

the need for teacher- or subject-centered instruction, but certainly sends a

strong message not to ignore the benefits of self-organized learning derived

from connectionist teaching. For a report on using a decentralized approach

to computer programming, see Resnick (1996).

Yuen’s next recommendation emphasizes the value of collaborative

projects:

Third, collaborative project work should be encouraged. Project work is
a complex cognitive and metacognitive process that requires both hands-
on and minds-on learning, that is, concrete subject-based knowledge and
abstract high-order thinking skills. Project-based learning is action-
oriented and focuses on doing something rather than learning about
something (Moursund, 1999). In projects, students engage in a complex
process of learning, inquiry and knowledge construction. The result is
an artifact, a product of student knowledge that can be shared and
critiqued. The resultant artifact becomes a product for review and
reflection (Dede, 1998). Projects are contextualized in issues and topics
related to the real world and, properly chosen, the context can situate
learning to promote authentic learning and improve transfer. In project
learning, students construct knowledge by manipulating and extending
ideas and information. Moreover, in project work, students share ideas
and exchange information as a group and improve knowledge
collaboratively. This change is particularly important in learning and
teaching computer programming.

77

We will also see several remarks by the edu-sig posters that note how much

programming is done in teams, and many suggestions that programming

exercises be done as projects in small groups. There is much research in

support of the educational benefits of such project-based learning, and

learning computer programming would especially seem to lend itself to such

learning-by-teamwork techniques.

Finally, Yuen’s fourth recommendation underscores the importance of

guidance to ensure that the necessary connections are in fact occurring in the

students’ minds:

Connectionist systems `always start with some initial constraints only,
and gradually acquire the rest of their knowledge through exposure to a
variety of specific examples and repeated correction of inferences about
those instances' (Strauss & Quinn, 1997, p. 57). Thus, lastly, students
need guided instruction and exploration to insure they acquire the
concepts and strategies underlying the diverse activities of computer
programming. This emphasis is in line with the research on teaching
computer programming since the 1980s.

It is this recommendation that keeps the connectionist theory from becoming

too open-minded, liberal, or relativistic. The key word here is ‘guided’ so that

students stay on track and on task in their programming endeavors. We will

see that this recommendation is in harmony with the goals and expectations

of the computer programming for everybody charter. Phil Agre (1998),

discussing his reorganized writing class, puts it like this:

Vygotsky's theory predicts that every classroom becomes part of your
mind, and so it's better to have a classroom that embodies positive
values. Many liberals, reacting against the rigid and factory-like
classrooms of authoritarian educators, have interpreted this idea as an
argument against structure. But that's not right. You can't learn
without structure, and the key is to provide a structure that adapts to

78

each individual's needs. The structure should also provide what
Winnicott called "holding", or that others call a "container"—a
supportive emotional framework that pushes people to do their best
without shaming mistakes.

And this, in turn, is reminiscent of Papert and constructionism:

There are two basic ideas of education. One is instructionism; people
who subscribe to that idea look for better ways to teach. The other is
constructionism; we look for better things for children to do, and assume
that they will learn by doing. (Pease, 1989)

We see here that constructionism supports connectionism. By ‘better things

for children to do’, Papert means constructing numerous programs, so that

gradually, the necessary conceptual connections are formed that lead to

programming proficiency.

Evaluation strategies
Once a program has been written or programming course completed, the

question of evaluation takes on two guises: How can the program itself be

evaluated? And, having completed a course of programming instruction, how

can the student/programmer be evaluated?

Program evaluation can be approached from a functional viewpoint, and

from a formal viewpoint. A functional evaluation would simply run the

program to see if it consistently generated expected results. Sometimes,

especially with larger programs involving a graphical user interface, this

becomes unwieldy at best due to the difficulty of trying all possible

combinations of menu commands and other interactions in the application.

One way to mitigate this is to require ‘unit tests’ with the program. Unit tests

are programs that call the solution program and compare its output with

79

what the unit test expects. A way to do this in Python is to use the doctest or

unittest modules.14

A formal evaluation of a program means to actually read both the code

and the comments; evaluation would be done much as an English teacher

would evaluate an essay or other written assignment, preferably in

conjunction with a functional evaluation to be sure the code actually runs. As

mentioned earlier, projects will often be done in teams, so team presentations

can also serve as a formal and functional evaluation tool. Members of the

team would present the problem, the algorithmic strategy for solving the

problem, the essential portions of code corresponding to program functions,

as well as demonstrate the code in action. Instructors may still want to

evaluate code comments separately to accentuate their importance to good

programming.

Student evaluation can also be done using more traditional methods, if

desired. For example, instructors can devise a comprehensive objective exam

consisting of questions about syntax, flow control, and other language

functions; recognition and interpretation of language statements and

expressions; evaluation of simple to more complex programs, predicting their

output; making changes to a given code fragment to effect a change in output;

creating simple programs to solve a problem; finding the syntactical and

14 See <http://www.python.org/doc/current/lib/module-doctest.html> and
<http://www.python.org/doc/current/lib/module-unittest.html> for details.

80

logical errors in a given program; and perhaps cloze exercises where blank

portions of a functioning program need to be filled in.

Cognitive effects of learning programming
Are there any beneficial effects to learning programming beyond

programming itself? For one, programming conveys a kind of perspective

about computers and their mechanistic nature. More and more people need to

know something of how computing machines and the systems they support

operate. According to Kaput, Noss and Hoyles (2002) our very dependence on

these machines makes it imperative that we develop a ‘sense of the

mechanism’:

An accepted (but, as we shall see, fundamentally false) pedagogical
corollary is that since mathematics is now performed by the computer,
there is no need for ‘users’ to know any mathematics themselves. Like
most conventional wisdoms, this argument contains a grain (but only a
grain) of truth. Purely computational abilities beyond the trivial, for
example, are increasingly anachronistic. Low-level programming is
increasingly redundant for users, as the tools available for configuring
systems become increasingly high-level. Taken together, one might be
forgiven for believing that the devolution of executive power to the
computer removes the necessity for human expression altogether (or at
least, for all but those who program them).

In one sense this is true. Precomputational infrastructures certainly
make it necessary that individuals pay attention to calculation: and
generations of 'successful' students can testify to the fact that
calculational ability can be sufficient (e.g. for passing examinations)
even at the expense of understanding how the symbols work. In fact,
quite generally, the need to think creatively about representational
forms arises less obviously in settings where things work transparently
(cogs, levers, pulleys have their own phenomenology). Now the
devolution of processing power to the computer has generated the need
for a new intellectual infrastructure; people need to represent for
themselves how things work, what makes systems fail and what would
be needed to correct them. This kind of knowledge is increasingly

81

important; it is knowledge that potentially unlocks the mathematics
that is wrapped invisibly into the systems we now use, and yet
understand so little of. Increasingly, we need—to put it bluntly—to
make sense of mechanism. (p. 15, .pdf version)

For the most part humans reserve the power of judgment for themselves

as more and more work-related practices devolve calculational expertise to

the computer. But this power of judgment is strongly dependent upon having

a well-developed sense of the mechanism:

Judgment in the presence of intimate computational power requires new
kinds of representational knowledge: distinguishing between what the
computer is and is not doing; what can be easily modified in the model
and what cannot; what has been incorporated into the model and why;
and what kinds of model have been instantiated. (p. 17, .pdf version)

It is computer programming that offers the most straightforward way to

achieving this necessary representational knowledge by developing a

powerful sense of the mechanism. Recall the quote by Harrell (2003) in

Chapter One where he describes the influence of programming languages on

media software:

However, the tools used to present and create media art lie behind every
media artwork. The theory of programming languages is a useful means
by which to characterize these media. Formal languages offer broad
insight into the nature of computational manipulation, and specific
organizational structures of imperative languages reveal reflections of
these structures in media software. This is a natural reflection because
the theory of languages expresses organized models for executing
algorithms and structuring data, which are the types of manipulations
human creators perform on media when treating it as computational
data.

This effect of formal programming languages extends to the structure of the

software programs that are created by it. Thus, having acquired a ‘sense of

the mechanism’ through knowledge of computer programming, one has

82

enabled at least rudimentary comprehension of other software that reflects

‘organized models for executing algorithms and structuring data’.

In a survey of current research findings on the effects of computer

programming, Clements (1999) discusses mathematics, including geometry,

number, arithmetic, algebra, ratio and proportion; problem-solving and

higher-order thinking; language arts; creativity; and social-emotional

development:

From an optimistic perspective, it could be claimed that few educational
environments have shown consistent benefits of such a wide scope, from
the development of academic knowledge and cognitive processes to the
facilitation of positive social and emotional climates. Yet, somewhat
paradoxically, realizing these multifarious benefits does not imply lack
of focus: Integration into one or more subject matter areas maximizes
positive effects.

Liao and Bright (1991) also found that the effects of learning a

programming language included greater reasoning skills, logical thinking

and planning skills and general problem solving skills. In addition, Mayer,

Dyck and Vilberg (1986) discovered that learning to program results in

increases in four specific higher-order thinking skills: word problem

translation, word problem solution, following procedures, and following

directions.

Finally, analogical thinking, the ability to utilize a well-understood

problem to provide insight and structure for a less understood problem, is

often required in programming where one often draws systematically on prior

programs in the development and construction of new programs

(Maheshwari, 1997). Lakoff and Núñez (2000) define ‘cognitive metaphor’ as

83

a “grounded, inference-preserving, cross-domain mapping.” In this sense,

most programs are, in fact, cognitive metaphors, where the problem the

program is solving is ‘grounded’ outside of the computer, inferences based on

the problem are preserved in the programmed solution, and the mapping

occurs in the computed domain as the program is developed. Thus, writing

programs uses and develops analogical thinking, as Maheshwari and others

suggest.

2.3 Introduction to Python
Since the research data focuses almost exclusively on the Python

programming language, it will be worthwhile to become acquainted with a bit

of its history, its context with other languages, and how the data came to be.

In this section, we discuss the advantages and disadvantages of Python,

where it fits in the pantheon of computer languages in general, how it is a

general programming language as opposed to a domain-specific one, and how

it supports different programming styles.

The language’s designer, Guido van Rossum, describes his motivation

for Python in an interview:

In the early 1980s, I worked as an implementer on a team building a
language called ABC at Centrum voor Wiskunde en Informatica (CWI).
I don't know how well people know ABC's influence on Python. I try to
mention ABC's influence because I'm indebted to everything I learned
during that project and to the people who worked on it.

ABC's design had a very clear, sharp focus. ABC was intended to be a
programming language that could be taught to intelligent computer
users who were not computer programmers or software developers in
any sense. During the late 1970s, ABC's main designers taught

84

traditional programming languages to such an audience. Their students
included various scientists—from physicists to social scientists to
linguists—who needed help using their very large computers. Although
intelligent people in their own right, these students were surprised at
certain limitations, restrictions, and arbitrary rules that programming
languages had traditionally set out. Based on this user feedback, ABC's
designers tried to develop a different language. …

In 1986 I moved to a different project at CWI, the Amoeba project.
Amoeba was a distributed operating system. By the late 1980s we found
we needed a scripting language. I had a large degree of freedom on that
project to start my own mini project within the scope of what we were
doing. I remembered all my experience and some of my frustration with
ABC. I decided to try to design a simple scripting language that
possessed some of ABC's better properties, but without its problems.

The Python website describes the result of Guido’s design in its executive

summary15 as follows:

Python is an interpreted, object-oriented, high-level programming
language with dynamic semantics. Its high-level built in data
structures, combined with dynamic typing and dynamic binding, make
it very attractive for Rapid Application Development, as well as for use
as a scripting or glue language to connect existing components together.
Python's simple, easy to learn syntax emphasizes readability and
therefore reduces the cost of program maintenance. Python supports
modules and packages, which encourages program modularity and code
reuse. The Python interpreter and the extensive standard library are
available in source or binary form without charge for all major
platforms, and can be freely distributed.

Python is part of the Open Source Initiative16 which declares:

The basic idea behind open source is very simple: When programmers
can read, redistribute, and modify the source code for a piece of
software, the software evolves. People improve it, people adapt it, people
fix bugs. And this can happen at a speed that, if one is used to the slow
pace of conventional software development, seems astonishing.

15 <http://www.python.org/doc/essays/blurb.html>

16 <http://www.opensource.org/>

85

We in the open source community have learned that this rapid
evolutionary process produces better software than the traditional
closed model, in which only a very few programmers can see the source
and everybody else must blindly use an opaque block of bits.

This isn’t to say that Python cannot be used to create closed, proprietary

software applications (it can); however, the spirit in which Python is offered

to programmers is usually reciprocated by products written in Python, that

is, many Python-based software packages are also open source. Python’s open

source nature and ability to run on almost any computer likely to be found in

school classrooms are two reasons to favor it over other languages that may

be proprietary or only run on a few types of computers.

The following two lists summarize the advantages and disadvantages of

Python as a programming language and were compiled from the following

sources: (Mitchell 1999; Forum 2003; Trauring 2003).

Advantages of Python:
• Portability

o Python is available on a wide range of hardware and software
platforms. This includes: Sun, Intel, IBM, Microsoft Windows
variants, Macintosh OS variants and all Unices, as well as less
well-known platforms, including PDAs and set-top boxes.

o Python plays well with other languages. Python programs can
be extended using C, C++, or Java, or can be embedded in
programs written in these languages.

o Python plays well with programming standards. Many high-
quality Python extensions are available which support almost
all Internet standards, CORBA, COM, SOAP, XML, XML-RPC
and so on.

• Powerful Simplicity

86

o Python programs are far quicker to develop than other high-
level languages. Because of the elegance and simplicity of the
language, Python programs tend to be 3-5 times shorter than
their equivalent in Java, and 5-10 times shorter than C++
equivalents.

o Python programs are easier to maintain. The simple, clean
syntax not only allows the original developers to remember what
they did, it also allows other developers to understand and
change programs. This allows for much lower maintenance costs
for Python programs.

o Python is an extremely versatile language. It can be used for the
simplest scripting applications, as well as for the development of
complex websites, and all the way up to the construction of
complex distributed applications.

o Python's object-oriented paradigm is the most powerful and
easiest to use of any commercial programming language.

o Convenient hassle-free strings, lists, and dictionaries that will
store as many objects as you like with no need for you to know in
advance how many you want to store.

• An extensive function library.

o Python makes it almost impossible to write obfuscated code.
Block structure is indicated by indentation, outline-style. The
syntax is clean, with a consistent calling structure for modules
and functions.

o Python uses small, well crafted components, called modules.
Modules are very easy to design and use, which encourages
formal and informal code libraries.

o Python is a byte-compiled language (conferring advantages of
speed) as well as an interpreted language (conferring
advantages of ease for the programmer).

• Free/Open Source Software (FOSS)

o Thousands of programmers around the world contribute to the
development of Python. These programmers are not being paid
to develop Python, but are being paid to develop applications.
They use Python in real world settings. This ensures that
Python is robust, secure, relatively efficient, portable, scalable

87

and has a feature set which meets real world needs, not what
vendors think customers should have.

o Python like all FOSS software has three freedoms: It can be
used freely, without paying exorbitant licensing fees. It ensures
free development of software applications without any
artificially imposed vendor restrictions. It ensures a free
software market, eliminating enterprise dependence on any
software vendor large or small.

o The online documentation that comes with it is thorough and
good.

Disadvantages of Python:
• If you want other people to use your Python programs, you have to

persuade them to install Python — and they have to install the whole
development environment.

• There is no standard Python graphical user interface library. Instead, it
borrows from elsewhere. The nearest thing to a standard is Tkinter,
which is supplied with Python and seems to be adequate.

• Lists are indexed from zero (0, 1, 2, 3, etc.). This doesn't come naturally
to me or to most other humans, who are accustomed to count things
starting at 1.

• Python is case-sensitive. The variable names BOB, Bob, and bob are
different and can have different values. (This is actually an advantage
according to many programmers.)

Despite these minor disadvantages, I believe the preponderance of

advantages, especially with respect to the clear, clean syntax of the Python

language, makes it the overwhelming choice for a first programming

language for middle and high school students. For a comparison of Python

and other languages with respect to their applicability as a first

programming language, see Georgatos (2002).

88

Kinds of computer languages
To understand where Python belongs in the pantheon of computer

languages, we need to establish context by considering the three general

ways source code (written by humans) can interact with a computer’s central

processing unit (executed by the machine). Much of the information in this

section comes from “The Unix and Internet Fundamentals HOWTO” website

written by Eric Raymond.17

The most conventional kind of language is a compiled language. The

programmer writes code (called source code) that gets translated into binary

machine code by a special program called a compiler. Once the binary has

been generated, you can run it directly without looking at the source code

again. This is the format in which most commercial software is delivered.

Compiled languages tend to give excellent performance and have the most

complete access to the underlying operating system, but are also considerably

more difficult to program. The best known examples of compiled languages

are C, C++, FORTRAN and COBOL.

The second kind of computer language is an interpreted language.

Instead of a compiler translating source code into independent binary

machine code, the language depends on an interpreter program to read the

source code line by line and translate it directly. The source code has to be re-

interpreted (and the interpreter present) each time the code is executed.

17 <http://www.ibiblio.org/pub/Linux/docs/HOWTO/other-formats/html_single/Unix-and-
Internet-Fundamentals-HOWTO.html>

89

Interpreted languages tend to be slower than compiled languages, and often

have limited access to the underlying operating system and hardware. On the

other hand, they tend to be easier to program and more forgiving of coding

errors than compiled languages. Because of their general slowness, pure

interpreted languages are not widely utilized, especially due to the rise of the

third kind of language.

This third kind is known by at least two different appellations: P-code,

and tokenized. With either term, it refers to a kind of hybrid language that

uses both compilation and interpretation. When the language’s source code is

executed, the interpreter (also known as a parser) creates ‘tokens’ in

language-specific binary files (rather than machine-specific binaries like a

compiler would). It is these language-specific tokenized binaries that then get

executed, and they do so independently of the source file. This tokenizing

process causes the initial startup of an application to be slow, but then the

program executes very fast: often it's hard to distinguish between a compiled

program and a tokenized program in terms of speed. Thus, tokenized

languages blend the flexibility and power of a good interpreter with the speed

of a compiled language. Python, Perl and Java are the three best known such

languages.

Alan Gauld offers a concise summary of the differences in his book

Learning to Program18:

18 <http://www.freenetpages.co.uk/hp/alan.gauld/>

90

Basically a programmer writes a program in a high level language
which is interpreted into the bytes that the computer understands. In
technical speak the programmer generates source code and the
interpreter generates object code. Sometimes object code has other
names like: P-Code, binary code or machine code.

The interpreter has a couple of names, one being the interpreter and the
other being the compiler. These terms actually refer to two different
techniques of generating object code from source code. It used to be the
case that compilers produced object code that could be run on its own
(an executable file - another term) whereas an interpreter had to be
present to run its program as it went along. The difference between
these terms is now blurring however since some compilers now require
interpreters to be present to do a final conversion and some interpreters
simply compile their source code into temporary object code and then
execute it.

Thus Python benefits from not having an explicit compile step (the executable

portions are automatically generated) and yet runs reasonably fast enough

for most programming situations. For situations where greater speeds are

warranted, a few different strategies are available, but these are outside the

scope of this overview.

John Ousterhous (1998) has written of the ascendancy of scripting

languages over system programming languages. In his terminology, system

programming languages are the compiled languages and scripting languages

are the interpreted and tokenized languages described above:

Scripting languages and system programming languages are
complementary, and most major computing platforms since the 1960's
have provided both kinds of languages. The languages are typically used
together in component frameworks, where components are created with
system programming languages and glued together with scripting
languages. However, several recent trends, such as faster machines,
better scripting languages, the increasing importance of graphical user
interfaces and component architectures, and the growth of the Internet,
have greatly increased the applicability of scripting languages. These
trends will continue over the next decade, with more and more new

91

applications written entirely in scripting languages and system
programming languages used primarily for creating components. ...

Scripting languages represent a different set of tradeoffs than system
programming languages. They give up execution speed and strength of
typing19 relative to system programming languages but provide
significantly higher programmer productivity and software reuse. This
tradeoff makes more and more sense as computers become faster and
cheaper in comparison to programmers. System programming languages
are well suited to building components where the complexity is in the
data structures and algorithms, while scripting languages are well
suited for gluing applications where the complexity is in the
connections. Gluing tasks are becoming more and more prevalent, so
scripting will become an even more important programming paradigm
in the next century than it is today.

Python is an exemplar of the scripting paradigm Ousterhous describes.

General and domain-specific languages
Python is a general programming language, not a specialized one. The

distinction is important as it relates to the consequences of learning how to

program. In the Computer Programming for Everybody proposal (discussed

more fully later in this chapter) the distinction was described as follows:

It is well understood that there is something of a dichotomy between
"general" programming languages on the one hand and "domain-
specific" languages on the other. For this discussion, we use the term
"general" in a broad and loose sense, to include functional programming
languages and possibly even logic programming languages, to the extent
to which they are usable as a general programming tool. Turing-
completeness20 is the key concept here.

19 “A type is a classification of data that tells the compiler or interpreter how the programmer
intends to use it. For example, the process and result of adding two variables differs greatly
according to whether they are integers, floating point numbers, or strings.”
<http://wombat.doc.ic.ac.uk/foldoc/foldoc.cgi?type>

20 “A Turing-complete system is one which has computational power equivalent to a
universal Turing machine. The concept is named in honor of Alan Turing. In other words, the
system and the universal Turing machine can emulate each other. No computers completely
meet this requirement, as a Turing machine has unlimited storage capacity, impossible to

92

The domain-specific category then contains everything else, from
command line argument syntax to email headers and HTML. The
distinguishing factor here is the presence of a relatively narrow
application domain. In this category we also place things like Microsoft's
"wizards" (really just sequences of predefined dialogs connected by
simple flow charts) and the controls and dials on microwave ovens or
nuclear reactors.

A typical property of domain-specific languages is that they provide
excellent control in the application domain for which they were
intended, and (almost) no freedom in unanticipated areas. For example,
HTML has no inherent ability for conditional inclusion of text, or for
variable expansion. (The fact that such features have been added many
times as incompatible extensions merely proves this point.)

General languages, on the other hand, usually aren't as good in any
particular domain. For example, it is much harder to write a program in
a general language to format a paragraph of text than it is in HTML.
However, general languages make up for this through their Turing-
completeness, which makes it possible to solve any problem that might
come up (assuming availability of sufficient resources). General
languages are therefore ideal when used in combination with domain-
specific languages.

Wrestling with this distinction came up significantly in a number of places in

the data. For example, during a discussion of why girls seem to be much less

interested in programming than boys, attention turned to the viability of

using a MOO (multi-user domain, object-oriented), a virtual meeting place

where participants interact, chat-like, and create and change the virtual

environment through issuing special commands. (See Bruckman (1995) for

more information.) The ‘special commands’ that can be expressed in a MOO

constitutes a domain-specific language, and some participants in the list

objected that focusing on such would detract from the business at hand,

emulate on a real device. With this proviso, however, all modern computers are Turing-
complete, as are all general-purpose programming languages.”
<http://en2.wikipedia.org/wiki/Turing-complete>

93

teaching a general language, Python. In this particular case, finding the right

combination of using both the general aspects of the Python language and the

domain-specific aspects of a MOO language proved to be too nettlesome and

no consensus was reached. Some of the participants advocated a kind of

augmented MOO where Python language constructs could be used directly as

MOO commands to create a much richer environment than the traditional

MOO environments. However others noted that there was already an

established (domain-specific) syntax for online MOO interactions that ought

to be respected; Python should simply be used to (re)create the environment.

This same issue arose in various other contexts, usually with respect to

the advisability of using packages that facilitate the creation of two- and

three-dimensional graphics. These packages often include a domain-specific

macro language to interact with the package, possibly detracting from using

and learning the Python language. Often the issue was resolved by noting

that Python can be used as a control language issuing domain-specific

commands to the package, thus combining the two types in a way advocated

in the quote above. Nevertheless, we will see in Chapter Four a similar

situation where no such resolution was achieved.

Styles of programming
There are three styles of programming in general use: procedural (also

known as imperative), functional, and object-oriented. Different languages

support these different styles to greater or lesser extents. Python supports all

94

three of these styles, with perhaps a lesser emphasis on the functional style.

The functional style is not to be confused with functions, which are chunks of

reusable code. Creating and calling functions is fully supported in Python,

and indeed, the ease with which one can do so is one reason for its popularity

as a first programming language. Here is a posting by one high school Python

teacher, Mr. Elkner:

Another example of how Python aids in the teaching and learning of
programming is in its syntax for functions. Of all the things that I
learned by using Python this year, the way in which the right tool could
help in explaining functions was the most exciting. My students have
always had a great deal of difficulty understanding functions. The main
problem centers around the difference between a function definition and
a function call, and the related distinction between a parameter and an
argument. Python comes to the rescue with syntax that is nothing short
of beautiful. Function definitions begin with the key word ‘def’, so I
simply tell my students, “when you define a function, begin with ‘def’,
followed by the name of the function that you are defining, when you
call a function, simply call (type) out its name.” Parameters go with
definitions, arguments go with calls. There are no return types or
parameter types or reference and value parameters to get in the way, so
I was able to teach functions this year in less then half the time that it
usually took me, with what appears to be better comprehension.

The functional style of programming is something different, and is largely

ignored in this study. However, for a useful introduction to functional

programming in Python, see Gauld (2000).

In his introduction to object-oriented design in Data Structures and

Algorithms with Object-Oriented Design Patterns in Python, Preiss (2004)

gives a high-level overview of the differences between these three styles:

Traditional approaches to the design of software have been either data
oriented [procedural] or process oriented [functional]. Data-oriented
methodologies emphasize the representation of information and the
relationships between the parts of the whole. The actions which operate

95

on the data are of less significance. On the other hand, process-oriented
design methodologies emphasize the actions performed by a software
artifact; the data are of lesser importance.

It is now commonly held that object-oriented methodologies are more
effective for managing the complexity which arises in the design of large
and complex software artifacts than either data-oriented or process-
oriented methodologies. This is because data and processes are given
equal importance. Objects are used to combine data with the procedures
that operate on that data. The main advantage of using objects is that
they provide both abstraction and encapsulation.

We will see in Chapter Four some disagreement among the participants

as to which style(s) should be taught to beginning programmers, and when.

Fortunately, the Python language supports whatever combination of styles a

teacher determines is best for his or her students. And, arching over all the

styles is a kind of rubric governing the approach to programming that Python

favors. If one goes to a Python prompt (>>>) in the interpreter and types

‘import this’ (without the quotes), the following poem will appear on the

screen:

The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one--and preferably only one--obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.

96

If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

These lines express half-whimsically, half-seriously the overall design

principles of the Python language.

2.4 Computer Programming for ‘Everybody’
In 1999, a proposal was submitted by Guido van Rossum to the Defense

Advanced Research Projects Agency (DARPA) titled “Computer Programming

for Everybody: A Scouting Expedition for the Programmers of Tomorrow”.

The proposal was predicated on three components:

• Develop a new computing curriculum suitable for high school and
college students.

• Create better, easier to use tools for program development and analysis.
• Build a user community around all of the above, encouraging feedback

and self-help.

Of the first two points, the proposal goes on to say:

The two major research goals are the development of a prototype of a
new programming curriculum and matching prototype software
comprising a highly user-friendly programming environment. We
envision that the typical target audience will consist of high school and
(non-CS major) undergraduate college students, although younger
students and adults will also be considered. ...

We plan to start by basing both components on Python, a popular free
interpreted object-oriented language. ... Python is extremely suitable for
teaching purposes, without being a "toy" language: it is very popular
with computer professionals as a rapid application development
language. Python combines elements from several major programming
paradigms (procedural, functional and object-oriented) with an elegant
syntax that is easy on the eyes and easy to learn and use.

The proposal also described the motivation driving it:

In the dark ages, only those with power or great wealth (and selected
experts) possessed reading and writing skills or the ability to acquire

97

them. It can be argued that literacy of the general population (while still
not 100%), together with the invention of printing technology, has been
one of the most emancipatory forces of modern history.

We have only recently entered the information age, and it is expected
that computer and communication technology will soon replace printing
as the dominant form of information distribution technology. ...

In this "expedition into the future," we want to explore the notion that
virtually everybody can obtain some level of computer programming
skills in school, just as they can learn how to read and write.

There are many challenges for programming languages and
environments to be used by a mass audience. If everybody is a
programmer, poor programmers will surely abound. Coping with this
situation adequately requires a rethinking of the fundamental
properties of programming languages and development tools. Yet, we
believe that there should be no clear-cut distinction between tools used
by professionals and tools used for education – just as professional
writers use the same language and alphabet as their readers!

As we saw in Chapter One, the vision of the future was articulated as follows:

In the future, we envision that computer programming will be taught in
elementary school, just like reading, writing and arithmetic. We really
mean computer programming – not just computer use (which is already
being taught). The Logo project, for example, has shown that young
children can benefit from a computing education. Of course, most
children won't grow up to be skilled application developers, just as most
people don't become professional authors – but reading and writing
skills are useful for everyone, and so (in our vision) will be general
programming skills. For the time being, we set our goals a bit less
ambitious. We focus on teaching programming to high school and (non-
CS major) college undergraduates. If we are successful here, we expect
that the lower grades will soon follow, within their limitations.

In addition to the goal of teaching how computers work, a course in
computer programming will return to the curriculum an emphasis on
logical thought which was once the main benefit of teaching geometry.

98

Despite the attractiveness of this vision, however, there are some who

question the advisability of teaching everyone to program a computer. One

such discussion21 offers a sample objection with a few responses:

I have a problem with this idea - it smacks of both a denigration of
software development as a profession and seems to imply that everyone
should be able to tell a machine what they want it to do. Look at the tax
system - everyone with an engineering degree can do the math
necessary to calculate their taxes, but many choose to have someone else
do their taxes. Why? Because some things are better left to the
specialists. A similar trend exists in auto maintenance - why should I
buy and store a set of tools to change my engine oil, filters, brakes, etc,
when for less that half the cost in materials, and much less in my time, I
can drive the car to the shop, wait 30 minutes, and have it done for me?
Software development is not trivial, and the average person without
training in the field will produce poor solutions. –PH

You can hire a CPA to do your taxes, but is it really worth it if you're
using the short form and can get it done in a half hour? In the same
way, I've found many uses for just firing up Python and typing a few
lines to get a job done, or writing a little one-line Perl or Awk program
to do a job for me. Who's to say that others wouldn't benefit? And even if
the average person doesn't need to program, learning how to do so might
make the computer itself seem like a less mysterious and cryptic device.
–NB

I like the analogy to writing. Folks with serious talent do it as their
primary profession--maybe compare a novelist to a compiler hacker.
Folks with other types of talent use writing as a tool--compare lawyers
who write briefs to web designers who develop Javascript maybe.
Almost every one else writes on an amateur basis, but can we say the
same thing about programming? There seems to be discontinuity in the
spectrum with programming. –SH

Inspired by CP4E, Yorktown High School is now in its 4th year using
Python in an intro CS course. My goal is to get as many students from
as broad a range of interests and backgrounds as possible into the
course. I do not aspire to make computer programmers out of everyone. I
do want to empower all my students with a greater understanding of
what a computing machine is and what it is capable of doing. I want to

21 <http://c2.com/cgi/wiki?ComputerProgrammingForEverybody>

99

“demystify” computer programming for all students in the class. Given
how important these machines are becoming in the production of our
world, such an understanding has important implications for
democracy. It has been both fun and challenging working successfully
with a very heterogeneous population of students. Using Python has
played a big part in making the course as successful as it has been. –JE

The automotive repair analogy seems compelling on the surface: after

all, cars and computers are both machines, and when something goes wrong,

it appears that we need a professional mechanic or programmer to fix the

problem rather than try to fix it ourselves. Also, we use the same word,

‘tools,’ to refer to devices that both use to perform their jobs. Furthermore, it

seems easy to equate the experience of driving a car with using a computer, a

car’s engine with a computer’s central processing unit, and a car’s auxiliary

subsystems such as braking, electrical, cooling and steering with a

computer’s auxiliary subsystems such as memory, hard drive, monitor, and

operating system. But the analogy of mechanic to programmer is flawed

primarily because of the nature of the material each role manipulates.

Notice the qualitative difference in the problem solving that a mechanic

performs and the problem solving that a programmer performs. A mechanic

is primarily concerned with restoring a car’s existing function, for example,

replacing brake pads, changing the timing chain, or repairing a clutch. These

functions all existed prior to an owner’s bringing the car to the mechanic, and

the problem solving activity is designed to bring the function back to its

preexisting state.

100

However, the nature of the problem solving that a programmer

undertakes, especially in the context we are considering here, is to create a

function that doesn’t yet exist. This isn’t to say that programmers don’t ever

fix problems like mechanics do (restore a prior function), but that isn’t the

main focus of their work. It also isn’t to say that auto mechanics never create

an artifact or new function, but that too is not the main focus of their work.

This qualitative difference is primarily due to the material that each

works with: mechanics work with hardware, programmers work with

software. Mechanics work with parts that deteriorate with vehicular use and

eventually need to be restored. Programmers work with ideas and algorithms

that do not rust, corrode or wear out. They may need to be improved, or

replaced with better ideas and algorithms, or ‘ported’ to another language or

machine, but they do not deteriorate.

We can now clearly see how the analogy is flawed by considering the

purpose of the machines under consideration. The purpose of a computer is to

compute, in the broadest sense of the word. Assuming a working computer,

you can consult a programmer for a solution to the problem of computing, for

example, a list of prime numbers. However, the purpose of a car is to

transport. Assuming a working car, you would not consult a mechanic for a

solution to the problem of transporting yourself, for example, to Glacier

National Park: The mechanic helps you with the vehicle; the programmer

helps you with the trip.

101

Finally, unlike owning a car, having a computer often means that the

tools you need to do programming are already on your hard drive. (And if not,

they are easy to obtain and install.) Unfortunately, those tools are often

neglected by ordinary users because they believe programming is difficult to

learn and therefore don’t attempt it. The CP4E effort is designed to radically

alter that belief by teaching people to use a particular set of tools centered on

Python designed for beginners.

The more compelling analogy to learning programming is learning to

write, which was covered in Chapter One. Computing and driving are much

more dissimilar than similar; computer programming is much more similar

to writing than to fixing an automobile. Thus the goals of Computer

Programming for Everybody are both laudable and plausible:

We compare mass ability to read and write software with mass literacy,
and predict equally pervasive changes to society. Hardware is now
sufficiently fast and cheap to make mass computer education possible:
the next big change will happen when most computer users have the
knowledge and power to create and modify software.

Having said this, I would like to temper the apparent ambition of the

goal (computer programming for everybody) with a couple of observations.

Recalling Mihai Nadin’s call for multiple literacies, we have to admit that

programming for everybody is just as unfairly hegemonic as literacy for

everybody:

I am not proclaiming that tomorrow we should not teach language
anymore. My major message is to teach together: traditional literacy,
visual literacy, multimedia literacy. Let's give every individual the
possibility to unfold according to his or her abilities. Some people are
not, due to biological constitution, inclined toward a literate mode of

102

expression. Others are more inclined. If you start now working toward a
multitude of forms of expression, you are going to achieve the possibility
of allowing each individual to reach his or her potential and that is
something which literacy never allowed. Literacy is a very powerful
instrument which says that the whole society is going to fit into a single
model, a single mold. It cannot be done. There are many people given
their biological condition who will never be able to write correctly. We
keep telling them they have to, they have to. Why not give them
something which corresponds to their biological precondition? That is
what I meant by opportunity, multiple literacies.22

This echoes Howard Gardner’s theory of multiple intelligences (1999) where

he defines ‘intelligence’ as “the ability to solve problems and fashion products

that are valued within one or more cultural settings.” He identifies nine types

of intelligences:

• Verbal-Linguistic Intelligence—well-developed verbal skills and
sensitivity to the sounds, meanings and rhythms of words

• Mathematical-Logical Intelligence—ability to think conceptually and
abstractly, and capacity to discern logical or numerical patterns

• Musical Intelligence—ability to produce and appreciate rhythm, pitch
and timber

• Visual-Spatial Intelligence—capacity to think in images and pictures, to
visualize accurately and abstractly

• Bodily-Kinesthetic Intelligence—ability to control one's body movements
and to handle objects skillfully

• Interpersonal Intelligence—capacity to detect and respond
appropriately to the moods, motivations and desires of others.

• Intrapersonal Intelligence—capacity to be self-aware and in tune with
inner feelings, values, beliefs and thinking processes

• Naturalist Intelligence—ability to recognize and categorize plants,
animals and other objects in nature

• Existential Intelligence—sensitivity and capacity to tackle deep
questions about human existence, such as the meaning of life, why do
we die, and how did we get here.23

22 <http://www.mime.indiana.edu/mihaiNadin/>

23 <http://www.thirteen.org/edonline/concept2class/month1/>

103

Programming aptitude is likely to be a combination of two or more of these

intelligences, and it is highly unlikely that any combination will be applicable

to everybody. ‘Everybody’ serves as a proxy for ‘more than just those who

make a living by programming’; analogous to those who are literate, yet do

not make a living by writing. One poster put it like this: 24

And the same aforementioned marketing-python poster pointed out that
brain surgery is not for everybody, and that programming is also not for
everybody. And I agree. But the CP4E slogan is using hyperbole to make
a memorable point: that programming can be usefully extended to a far
greater audience. –Ron Stephens

This same person serves as an excellent example of the effect of learning

Python programming by a non-Computer Scientist. This rather lengthy

posting made to the computer.language.python newsgroup summarizes his

involvement with Python inspired by the CP4E movement:25

As most of you know, the founder and creator of Python has stated an
interest in bringing the joys of computer programming to a wider
audience, and he has coined the phrase "Computer Programming for
Everybody" to sort of sum up this concept. I fit in this category, for prior
to about 3 yrs ago, my programming experience and knowledge was
next-to-none. After 3 yrs of enjoying Python as a hobby in my limited
spare time, I have created a program, which I call askMerlin, that is
simple enough for a newbie to understand, yet interesting and different.

Having greatly cleaned up the original code, the basic program is now a
class Decision() that allows one to simply analyze any decision one needs
to make. The other modules are subclasses of Decision() and are sort of
ultra-mini expert systems on how to decide what to eat for lunch, who to
vote for in an election, how to predict who will win a given basketball
game, football game, and how to answer yes or no type questions. The

24 <http://groups.google.com/groups?th=26115a570df7854e>

25 Ibid.

104

last two modules apply the same technique but also utilize the Internet
to gather data used to analyze and make decisions.

I think it is a fun little program. Newbies can not only understand it,
but can add simple modules, in any area of their expertise, by simply
subclassing Decision(), or by simply creating an instance of Decision and
over-riding a few key methods, or perhaps more simply by imitating the
functional logic.

OK, that's my spiel. The program can be found at my web site at
http://www.awaretek.com/plf.html

humbly-yet-fearlessly-treading-where-he-ought-not-ly-yours

Ron Stephens

P.S. of course I am still adding to this program, especially the internet-
enabled part, and welcome ideas / contributions from any and all,
especially relative newbies who need a place to start.

P.S.S. to Newbies, the best way to understand this program is just to
run it a few times. It is a command line program, and although I have
cleaned up the code, I also removed for the time being the
documentation and comments, that were becoming unwieldy after three
years of fiddling. I think the code speaks for itself, especially after you
run it a few times and see how it works. And yes, I do intend to add
some simple comments back into the code ;-))) eventually. Also, I
apologize in advance for any indentation errors anyone has after
downloading or cutting and pasting the code; just run the program and
let the Python error messages help you sort out any formatting or
indentation errors you may encounter.

The basic idea is to choose between a few options or alternatives, by
basing your choice on a few good criteria, with each criteria having a
weight, or relative-importance-factor, and then, by various means,
determining a score for each option on each criteria. There, that's the
documentation for now ;-)))

And lastly, yes, I do realize it isn't much to show for three years of part
time work, but hey, I give me A's for persistence.

One person questioned the connection of his software program to the CP4E

slogan. Here was the gist of Ron Stephens’ reply:

105

Look, the main thing is this. My program is trivial; I could have done
more than half of it by simply using an Excel spreadsheet way back 3
years ago. But I wouldn't have, and the Python program, trivially simple
as it is at its roots, raises interesting ideas for extension and expansion
that could just possibly lead to quite interesting uses. It will still be
trivial in most ways, it won't ever earn a buck, but it could be
interesting and useful; and I don't think I would have been motivated to
follow up on any of those ideas in a lesser language in which the barrier
to such exploration was higher than I would want to pay. Python seems
to encourage and reward incremental effort, and it leads one to explore
extensions and improvements to programs because the language makes
it relatively easy to see how to do the extensions.

And it gives me satisfaction; and, if Python continues to stimulate my
interest and motivation for another 25 years (if I should live so long...I
am 50 already!) then who knows, it just might be a nice program in 2028
when I pass on. Stranger things have happened.

And how else could I have spent my precious leisure time? Watching
TV? Reading more books? They would have earned me no more money,
and perhaps simulated my mind less.

But the real payoff, I am sure, is the community. Even reading the great
classics would not have expanded my community of social contacts and
interaction with intelligent, humorous people who help me with my
programs, answer my questions, and enliven my life with discussions I
would have not otherwise been privy to.

And so if I feel bold enough to share my little program with the
newsgroup, and risk the ridicule of showing off my Mickey Mouse side
(as one of my beloved Physics professors used to say), then so be it.

Watching Python grow is a good pastime. If even one other person
benefits from seeing my program, even if it is to suddenly realize and
say to themself "Hey, I could do that a lot better than that" then I am
happy I shared it.

If someone codes a mini-expert system to add to the program, I will be
ecstatic. And if none of this happens, I am none the worse for wear.

2.5 Edu-sig newsgroup
A few months after the Computer Programming for Everybody proposal

was made public, a new Python special interest group was formed which

106

refers to itself as the ‘edu-sig’ newsgroup. We find the following description of

the group on their home page:26

Python continues to make inroads at all levels in education. As a first
programming language, Python provides a lucid, interactive
environment in which to explore procedural, functional and object
oriented approaches to problem solving. Its high-level data structures
and clear syntax keep the forest in view through the trees. …

Edu-sig provides an informal venue for comparing notes and discussing
future possibilities for Python in education.

Discussion in the group ranges over a wide variety of Python-related topics at

all levels, from beginning programmers to advanced applications. The group

constitutes a ‘global discourse community’, in the sense described by

Killingsworth and Gilbertson (1992):

Global discourse communities, by contrast [to local discourse
communities], are groups of writers and readers defined exclusively by a
commitment to particular kinds of action and discourse, regardless of
where and with whom they work. (original emphasis) (Killingsworth
and Gilbertson, 1992, p. 162; in Swales, 1998, p. 201)

The original (1992) sense of these ‘particular kinds of action and discourse’

tended to include practices such as conference participation and professional

journal subscriptions; however, with the rise of the Internet, it can also

include membership in online newsgroups such as the Python edu-sig.

Swales (1998) describes how Porter (1992) characterizes this kind of

participation in conferences and journals as a forum:

A forum is a “concrete, local manifestation of the operation of a
discourse community” (1992, p. 107). For Porter these fora can range
from being a defined place of assembly, to being an occupational

26 <http://www.python.org/sigs/edu-sig/>

107

location, and on to being a vehicle for discourse community connection,
such as a conference or a journal.

Or a newsgroup. The ‘local manifestation’ that defines the edu-sig forum

is the set of messages that are sent to each member of the group, and which

are archived in a public repository. And these texts are unified by the group’s

focus on promoting the use of Python as a first programming language in

school settings, thus defining the group’s raison d’être.

In the next chapter I characterize the message data more fully, and we’ll

see that much of the data was excluded from consideration for various

reasons, but let me mention here a bit about the members of the group.

Across all of the messages in the initial dataset there were 260 different

posters. Of those, 146 posters had messages in the selected set of message

threads. Of those, I looked at the 67 posters who had more than three

postings in the data (which included Guido van Rossum). I looked to see what

‘roles’ they could be said to be playing while participating in the forum. In

trying to ascertain those roles, I examined any self-introductions they might

have made, the signatures they might have appended to their posts, their

email domains, and any self-referential information they might have included

in a post. Nevertheless, there were a few posters whose role I could not

classify.

There were two primary roles identified: education, and computer

business, with a third minor role of writer. The ‘education’ role included

teachers and professors at the high school and college levels, a few students

108

(primarily high school), parents in a teaching role with their children or other

relatives, and others whose primary mission appeared to be actively bringing

computer programming into a school’s curriculum. Of these, relatively few

appeared to be teachers in content areas other than programming. Of those

few, the subject areas represented were Math and Physics, as well as one in

Art.

The ‘computer business’ role included a wide variety of for-profit and

non-profit endeavors based on whatever I could glean from references to web

pages in their signature files or in their postings. The ‘writer’ roles were

mainly identified by personal familiarity with their writings, for example,

authors of Python-related books in bookstores, and articles in computer-

related magazine and websites.

Some of the roles were ‘blended’ roles, for example, a person in an IT

department at a college: education or computer business? A person selling

educational training software: computer business or education? A published

writer who teaches at the local community college: writer or educator? I had

to read a sampling of these people’s postings to get the flavor of which role

seemed more appropriate for them. For a breakdown of the 62 posters I was

able to classify, representing the most prolific posters in the edu-sig

membership that contributed to the data I eventually analyzed, see Table 4.

109

Table 4 Newsgroup participant roles

No. Role Percentage
35 Educators 56%
22 Computer business 35%
5 Writers 8%

These participants contributed the bulk of the messages that

constituted the selected data. In the next chapter, we take a look at some

statistical data across all the messages in the archive, the procedures used to

reduce the archive to a manageable size of relevant messages, and the

qualitative framework within which the selected messages were analyzed.

110

CHAPTER 3

METHODS AND PROCEDURES

The so-called empirical science of nature is, as actually experienced,
the highly contrived encounter with apparatus, measuring devices,

pointer readings and numbers. Inquiry is made 'methodical,' through
the imposition of order and schemes of measurement 'made systematic'
under rules of a new mathematics expressly invented for this purpose.

This mathematics orders an 'unnatural' world that has been
intellectually 'objectified,' re-presented or projected, ripe for the mind's

grasping—just as the world itself will be grasped by the techniques
that science will later provide. Even the modern word 'concept' means

'a grasping-together,' implying that the mind itself, in its act of
knowing, functions like the intervening hand—in contrast to its

ancient counterpart, 'idea,' 'that which can be beheld,' which implies
that the mind functions like the receiving eye. Science becomes not the

representation and demonstration of truth, but an art: the art of
finding the truth—or, rather, that portion of truth that lends itself to

being artfully found.

—Leon R. Kass, Life, Liberty and the Defense of Dignity

3.0 Introduction
As described in the previous chapter, the source of data for this

dissertation was a set of messages posted to a public newsgroup. This data

had to be subjected to a set of procedures in order to extract the salient items

before a content analysis could commence. This chapter describes those

procedures as well as offering various statistical profiles of the messages.

Along the way, we discuss two procedures, PhraseRate and TextGraphs,

111

which provided two ways of abstracting the contents of the message threads.

We end by discussing the type of analysis used on the data.

3.1 Data profile
I began my research with a single large mailbox file that came from

downloading the message archive from the edu-sig website. The first message

in the database was posted Jan. 29th, 2000; the last one was Apr. 18th, 2003

(my data cutoff point). In order to work with this data, I had to import it into

a database. This process proved to be less straightforward than it perhaps

should have been, but thanks to a key script found on the web, was readily

accomplished. The steps I followed were:

• Open and save the mailbox archive in text format using BBEdit text
editor.

• Import messages into Mailsmith mail reader: resulted in 2,782
messages.

• Export messages into Filemaker database using custom Applescript27

(this didn't work the first time. It took a few hours of troubleshooting to
discover the problem, which, fortunately, was easily solved:
reformatting the date fields in the database)

I now had a ‘messages’ database where each record represented a single

message posted to the edu-sig group. Resisting the temptation to begin at the

beginning and read every message in chronological order, I determined that

it would be best to randomly sample the database of messages to get a global

feel for the variety of the topics of discussion and the range of the group’s

‘tenor’. It seemed as though 10% of the messages would constitute an

27 http://home.knuut.de/paul/scripts/mailsmith/Export_to_FMPro3.html

112

adequate sampling, but this figure was arrived at intuitively rather than

empirically. Also, there was another factor to consider. All messages occur in

the context of a ‘thread’, that is, a series of responses to an initial posting, or

responses to responses, etc. (There were many messages with no responses;

these were considered threads with a length equal to one.) Operationally, I

defined a thread as a set of messages ordered by date and time which all have

the same Subject header.28 I then constructed a related database table

(‘threads’) that brought each message into its thread, and counted how many

messages were in each thread (even if that thread was only 1 message in

length). Initially there were 758 threads ranging in length from 1 to 42 (see

Fig. 1). As we can see, almost half of the threads were only one message long.

To obtain my random sample, I wrote a short database script that

randomly selected 5% of the messages for initial perusal. In addition, I wrote

another script to select the second random 5% of the messages, but chosen at

the thread level. That is, threads were selected at random, and a running

total of the messages they constituted was kept until 5% of the messages

were selected. (As it turned out, there was little overlap between these two

samples.)

I then read these messages to acquaint myself with the data. As I read, I

marked each message with one or more codes that indicated the content of

28 In practice, posters occasionally continued an existing thread with a modified or
completely new subject title, so some threads seem to begin in the middle of a conversation.
These ‘branches’ were treated as separate threads.

113

the message. These codes were not used directly in the analysis process,

rather, they constituted the groundwork as I created the categories into

which the threads were sorted during the later thread selection process.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Thread Length

N
u

m
b

e
r

o
f

th
re

a
d

s

Figure 1 Distribution of thread lengths

Poster participation
We see in Figure 2 the ebb and flow of messages posted month by month

over the 3-year time period. There is an initial burst of enthusiastic activity

in the first month, February 2000, which is never subsequently equaled

(although May and June 2001 come somewhat close).

In Figure 3 we see the distribution of messages by poster. Of the 265

total posters to the group, 112 posted a single message. However, the group

also has a few prolific posters: shown at the far right is one who posted 110

114

messages during the 3-year period. In addition, not shown on the chart for

reasons of scale, are two outliers, one who posted 325 messages, and another

who posted 605 messages!

Thread Dynamics
We can also examine the distribution of messages through time within a

thread. In Figures 4 – 12 we see the number of messages per day over the

lifetime of the nine longest threads in this study. (These figures are ordered

by date of first posting.) There didn’t appear to be any consistent pattern to

these distributions, but a larger sample might produce some similarities that

would allow threads to be grouped accordingly.

In Figure 13, we see this group’s thread persistence – the average

number of days a thread of a given length persisted. So, for example, threads

of length 10 lasted an average of 3 days. Keep in mind that the sample size of

the longer threads is much smaller than the shorter ones; much more

variation will be exhibited. As it turned out, the average duration of all

threads of any length (greater than 1) is almost 6 days.

Another measure of thread dynamics is to consider the number of

different posters that contributed to the thread. In Figure 14, we see that the

number of different posters increases as thread length increases. As in the

previous figure, the number of longer threads is much lower than the number

of shorter ones. The average number of different posters over all thread

lengths (excluding length 1) is 3.4.

115

0

50

100

150

200

250

Ja
n-

00

Mar
-0

0

May
-0

0

Ju
l-0

0

Se
p-

00

Nov
-0

0

Ja
n-

01

Mar
-0

1

May
-0

1

Ju
l-0

1

Se
p-

01

Nov
-0

1

Ja
n-

02

Mar
-0

2

May
-0

2

Ju
l-0

2

Se
p-

02

Nov
-0

2

Ja
n-

03

Mar
-0

3

N
u

m
b

e
r

o
f

m
e
ss

a
g

e
s

Figure 2 Total no. of messages posted each month

0

20

40

60

80

100

120

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

Number of messages posted

N
u

m
b

e
r

o
f

p
o

st
e
rs

Figure 3 Most participants posted few messages

116

0

2

4

6

8

10

12

4/27/00 4/28/00 4/29/00 4/30/00 5/1/00 5/2/00 5/3/00

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 4 Messages per day for thread length 31

0

2

4

6

8

10

12

14

16

18

20

10/4/00 10/5/00 10/6/00 10/7/00 10/8/00 10/9/00

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 5 Messages per day for thread length 38

0

2

4

6

8

10

12

14

16

12/11/00 12/12/00 12/13/00 12/14/00

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 6 Messages per day for thread length 29

117

0

1

2

3

4

5

6

7

8

9

5/30/01

5/31/01
6/1/01

6/2/01
6/3/01

6/4/01
6/5/01

6/6/01
6/7/01

6/8/01
6/9/01

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 7 Messages per day for thread length 30

0

5

10

15

20

25

6/20/01 6/21/01 6/22/01

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 8 Messages per day for thread length 29

0

2

4

6

8

10

12

8/3/02

8/4/02

8/5/02

8/6/02

8/7/02

8/8/02

8/9/02

8/10/02

8/11/02

8/12/02

8/13/02

8/14/02

8/15/02

8/16/02

8/17/02

8/18/02

8/19/02

8/20/02

8/21/02

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 9 Messages per day for thread length 25

118

0

5

10

15

20

25

9/19/02 9/20/02 9/21/02 9/22/02 9/23/02 9/24/02 9/25/02

Date posted

Nu
mb

er
 of

 m
es

sa
ge

s

Figure 10 Messages per day for thread length 36

0

2

4

6

8

10

12

14

16

18

20

10/7/02 10/8/02 10/9/02 10/10/02 10/11/02 10/12/02 10/13/02 10/14/02 10/15/02

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 11 Messages per day for thread length 42

0

2

4

6

8

10

12

14

16

18

20

10/10/02 10/11/02 10/12/02

Date posted

Nu
m

be
r o

f m
es

sa
ge

s

Figure 12 Messages per day for thread length 28

119

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

18.00

20.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Thread length (# of messages)

N
u

m
b

e
r

o
f

d
a
y
s

Figure 13 Thread persistence

3.2 Thread Selection Procedure
It was clear from the initial reading of the 10% data sample that there

were many threads that would not contribute any meaningful information for

the present study. I had to winnow the data somehow, so the question

became, which threads constituted ‘wheat’ and which ‘chaff’? I needed to

discard the threads that held little likelihood of containing useful

contributions to the topic. To do so, I developed a heuristic based on two

measures: one based on thread length and the other based on poster variety.

120

0.00

2.00

4.00

6.00

8.00

10.00

12.00

14.00

16.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Thread Length

N
u

m
b

e
r

o
f

D
if

fe
re

n
t

P
o

st
e
rs

Figure 14 Average number of different posters by thread length

I began by assuming that threads of length one would automatically be

considered ‘chaff’ since these engendered no responses and were evidently of

little interest to the group. After removing these from consideration, I found

that the average length of all threads was 5.6 messages. Next, I considered

the number of different posters for each thread. We see in Figure 14 that in

general, unsurprisingly, the number of different posters increases as the

thread length increases. The average over all threads greater than length one

is 3.4 different posters per thread. Combining these two measures, I

narrowed the list of threads to those that were five or more messages long

having at least three different posters. Out of the original 758 threads, this

121

heuristic left 150 potentially ‘interesting’ threads (averaging almost 11

messages in length each).

My next step was to look at the subject headings of these 150 threads,

and group them into categories (see Table 5). I operationalized these

categories by grouping headings that had related terms. This process was

remarkably straightforward since I had already familiarized myself with the

range of topics in the threads from having read the initial random sample.

The thread subject headings fell into place with little effort. In some cases, a

heading would seem to belong to two groups, so I had to weigh the probable

intent of the thread and place it somewhat arbitrarily. For example, one

thread heading was “text compression as a learning tool”; did that belong in

the Education grouping (‘learning tool’) or the Python/Computer Science

grouping (‘text compression’)? In this case, I reasoned that the original poster

was more likely to be discussing the pedagogical ramifications of the

technique rather than the specifics of the technique itself, so I put it in the

Education category. The Miscellaneous category consisted of topics that only

a single thread addressed while the Unknown category consisted of topics

that were not reflected in the language of the heading at all.

Eleven categories emerged. As I studied the headings, it became obvious

that some of the categories clearly were appropriate to the present study

(Education, CP4E, Math-related, Science-related, and Programming for fun),

122

Table 5 Thread categories

Thread Category # of
threads

Sample Subject Heading

Education 33 • My experience teaching Python
• Socratic methods
• Assigning homework

CP4E 6 • Python for non-programmers
• Jpython and CP4E
• CP4E VideoPython learning to
teach/teaching to learn

Python/C.S. 28 • Python for AI
• Analyzing algorithms
• How to improve code performance

Math-related 15 • Where mathematics comes from
• Algebra + Python
• Calculating area of a surface plane
on a spherical body

Science-related 5 • Periodic table
• Modelling
• Scientific Python 2.2

Editors 9 • In praise of VPython
• Python Shell

Graphics-related 9 • Simple frame buffer module
• Steps for making a fractal with
Python

Programming for fun 7 • Programming for the fun of it
• Cards n stuff
• Python programming for kids

Python & other languages 8 • Lisp vs Scheme vs Python
• Emulating Pascal input

Miscellaneous 8 • Would you use PythonCard
• Database for a small network
• Beyond 3D

Unknown 22 • And now for something completely
different
• Which way did the chicken cross
the road
• A fact on the ground

123

some clearly were not appropriate (Editors, Graphics, Python & other

languages) and some were possibly appropriate (Python/Computer Science,

Miscellaneous, and Unknown).

 ‘Appropriateness’ was defined pragmatically. For the purposes of the

present study, I had to limit myself to a manageable number of topics. The

topics I excluded certainly are important in their own right, and certainly

have relevance to the issue of programming Python in an educational setting;

however, these particular topics are also either too transient, too marginal, or

at too low a level to be usefully considered in this study. For example, I

decided not to consider comparisons of Python with other languages vis-à-vis

their applicability as a first programming language. Many of the posters had

experience with and opinions of, for example, Java, C/C++, Pascal, Perl,

Scheme or Lisp, Logo, Basic, APL, and numerous other languages, but to

adequately review and compare all of those languages would necessitate a

separate project.

Another popular topic was that of graphics: how to handle, how to

manipulate, how to usefully deploy in an educational environment. Again,

the variety of modules and approaches and projects seemed too distracting

from the primary focus of the present study. Besides, it felt as though the

topic was straying away from computer literacy and into what we might call

media literacy. Using analog or digital media, there is a technological skill, a

literacy, a ‘media-savvyness’ to be acquired by creating and receiving such

124

messages; e.g. being able to critically examine a graphic artifact to see how it

achieves its effect on an audience. Susan Langer (1942) points toward this

type of skill, at least in relation to visual graphics, when she writes:

Visual forms—lines, colors, proportions, etc.—are just as capable of
articulation, i.e. of complex combination, as words. But the laws that
govern this sort of articulation are altogether different from the laws of
syntax that govern language. The most radical difference is that visual
forms are not discursive. They do not present their constituents
successively, but simultaneously, so the relations determining a visual
structure are grasped in one act of vision.

Such concerns are valid and important for a programming teacher who

teaches how to create applications that also include graphical user interfaces,

and there are many paths that can be followed to achieve this. I didn’t feel

that I could resolve the data into a group consensus, nor adequately present

the arguments for and against different positions. I also felt resonance with

the thought expressed by Python’s creator, Guido van Rossum:

I believe that programming itself, i.e. expressing the intended operation
of a computer program, is best done through text. I guess that means
that I believe that text (symbols) is more powerful than images. While a
picture may be worth a thousand words, in my experience, most
meaningful collections of a thousand words are hard to capture in a
picture. (You can also see a program as a two-dimensional picture made
up out of symbols.) (see also McCloud, 1999, p. 8)

A closely related issue was that of using an integrated development

environment (IDE). There are an abundance of choices, and other sources of

information would be better than trying to review or comment on the ones

mentioned in the threads. Plus, Python comes with IDLE, an IDE that serves

as a baseline environment from which to begin.

125

Finally, there were quite a few threads that concerned themselves with

questions of Python syntax. Certainly syntax issues are important for anyone

teaching or learning a computer language, but for the most part, the issues

raised in these threads are either moot, due to changes in later versions of

the language, or are simply out of the user’s control – they are part of the

language’s design. I saw these discussions as interesting in their own right,

but of little value to the goals of the present study.

So, of the eleven groupings based on the subject headings, threads from

five were definitely in, threads from three were definitely out, and threads

from three were possibly in, possibly out. However, I felt that examining the

subject headings alone was insufficient, especially the Miscellaneous and

Unknown category threads. I needed some way to ‘glance’ inside each of these

threads to distinguish content that was likely to be salient from that which

was superfluous. There were two techniques that I was aware of: PhraseRate

and Pathfinder text graphs. Describing each will take us on a bit of a ‘scenic

ride’ before we come back to the data itself.

3.3 PhraseRate
PhraseRate29 is a keyphrase extraction tool for use with webpages.

Unlike other similar tools, it doesn’t rely on an existing corpus to calibrate its

results, but applies bottom-up heuristics to determine the key phrases of a

text. Humphreys (2000) says: “PhraseRate…introduces a novel keyphrase

29 http://infomine.ucr.edu/download/PhraseRate/

126

extraction heuristic for web pages which requires no training, but instead is

based on the assumption that most well written webpages ‘suggest’

keyphrases based on their internal structure.” He further explicates how that

‘internal structure’ is evaluated:

1. The program should not depend on training: There is a large variety
of topics and writing styles among webpages as well as emerging topics,
words, and phrases in research. It would be difficult to provide an
accurate and flexible phrase extractor in an open ended environment
derived from a closed set of training examples. So a design based more
on the intrinsic properties of the webpages was desired. (If training was
to be used, it should be for higher level parameter tuning only.)

2. Candidates for phrases should be from 2 to 5 significant words long
and should not cross various blocking structures such as punctuation
and HTML formating blocks. Longer phrases supporting keywords are
rather rare and were considered to be an excessive computational
expenditure.

3. Extraction should be accomplished by rating and filtering.

4. The rating of a phrase should be in part dependent on the number of
instances in the document: After evaluating individual phrase
instances, we fold in their weights to form a global evaluation. We want
to emphasize repeated phrases subject to the other conditions.

5. The rating of a phrase instance should be in part dependent on the
strength (weights) of its constituent words.

o Emphasize uniformly good sequences of words: A highly rated
word accompanied by a pair of weak words does not form a
distinguished sequence. For the group as a whole to be
considered, all the individuals should be distinguished to a fair
degree.

o Phrase rating length coordination: We don’t want to consider long
phrases of trivial words to be somehow better than a good pair of
words. On the other hand, a string of uniformly emphasized
words is probably a good candidate, so we want to encourage
longer strings somewhat.

6. The weight of an instance of a word was to be determined by:

127

o HTML mark up, in a nested fashion,

o location from the start, up to an “introduction-limit” distance.
That is, an emphasis function that decayed up to a fixed level
was to magnify the importance of introductory words.

o capitalization (modestly),

7. The global (document-wise) weight of a word was taken to be the
accumulation of the weight of all its instances, and hence be additive.

8. Last, we consider the following reasonable phrase ranking scale
invariance conditions:

Given the additive nature of rated word occurrences, if the word weights
are rescaled by a constant, then the ordering of the rated phrases should
remain unchanged.

This is satisfied by the natural Homogeneity property: If all the
weighting values of the component words are rescaled by a constant c >
0, then the rating of the phrase are likewise scaled by c.

For each webpage that is submitted to PhraseRate, it returns a short

list of 10-20 keyphrases, rank ordered by importance, representing, according

to its heuristic, the ‘essence’ of the text. I installed PhraseRate and then

wrote two scripts:

• A Filemaker script that exported each thread as a single webpage
• A Python script that captured and saved the PhraseRate results for

each thread/webpage

These results were then imported into the Threads database so that by

quick inspection I might determine the topics covered within a thread.

However, before doing this, I felt it would be worthwhile to check PhraseRate

results against another technique I had employed elsewhere in my research

(Miller, 1995). Instead of a short linear list of keyphrases, Text Graphs

128

produce a two-dimensional graph akin to a concept map using the Pathfinder

algorithm.

3.4 Pathfinder text graphs
A brief summary of the Pathfinder algorithm is offered by Johnson

(1991):

The Pathfinder scaling algorithm transforms a proximity matrix into a
network structure in which each object is represented by a node in the
network and the relatedness between objects is depicted by how closely
they are linked. The method searches through the nodes of the network
to find the closest indirect path between objects. A direct link between
two nodes is added only if the closest indirect path between the two
nodes is greater than the proximity value for that pair of objects.

For a more complete discussion, see Schvaneveldt (1990). For an example of

using the algorithm in educational research, see Berger and Jones (1995).

Prof. Berger is also the person who introduced me to the Pathfinder

algorithm and encouraged me to explore its use for creating text graphs.

In a text graph each node is a unique term (word or recurring phrase) of

a given text. The proximity matrix is generated according to the algorithm

described below.

There are two stages to processing a given text: data preprocessing, and

relationship matrix generation.

Data Preprocessing
1. First, remove all stop words
2. Then, stem all remaining words
3. Next, combine frequent word sequences into phrases

129

This leaves an ordered list of terms (words and phrases) from which we

generate a few basic statistics to work with while generating the matrix:

4. Generate a list (called ‘uniqlist’) of all terms that occur at least once in
the document (after the first three processing steps)

5. Associate with each term in the uniqlist a list of (numerical) positions
corresponding to its occurrences in the modified source text (e.g. ‘teach’
‡ [34,98,156,332,450])

6. If desired, limit the number of nodes in the graph to the top 25, 50, 75 or
100 or so terms having the greatest number of occurrences in the text.

Relationship Matrix Generation
Each cell of the relationship matrix holds a value representing the

strength of the relationship between two terms. This value is the sum of two

measures: one of frequency, and one of proximity. Support for the use of

proximity and frequency comes from Osgood's (1963) ‘semantic differential’

where we can say that proximity serves as a proxy for ‘potency,’ and

frequency for ‘activity.’ (The third differential, ‘evaluation,’ appears not to be

measured in the present version of text graphs.) Remarkably, Osgood's

method for measuring the semantic differential is quite similar to the

Pathfinder procedure for measuring node closeness.

 These values are arrived at by two sets of calculations on the numbers

in the list associated with each term. The first measure, frequency, is,

ostensibly, a simple product of the length of the list of positions for each term.

We shall see that this needs to be normalized, but the product is a first

approximation. The second measure, proximity, is the sum of reciprocals of

130

all the pair-wise differences between the positions of one term with the

positions of the other.

Let’s consider an illustrative example. If one of the terms is (‘teach’,

[34,98,156,332,450]) and the other is (‘learn’, [32,76,211,408]) where the

numbers represent positions in the text where the word occurs we see that

there are 5 x 4 = 20 occurrences of the ‘teach – learn’ pair since ‘teach’ occurs

5 times and learn occurs 4 times in the text. Therefore, the measure of

frequency will contribute a score of 20 towards the final value in the

corresponding cell of the relationship matrix. However, we can modify this

value by considering how closely together the two terms occur to each other

(proximity measure). If the two terms are close, then the difference in their

positions will be small, and the reciprocal of that difference will be

(relatively) large. If the two terms are far apart, then the difference in the

positions will be large, and the reciprocal of that difference will be (relatively)

small. Thus the sum of all possible reciprocal differences between the two

terms is a measure of proximity and is added to the frequency score to arrive

at a final value for that relationship. In this example, the proximity measure

would be:

1/(|34-32|) + 1/(|34-76|) + 1/(|34-211|) + 1/(|34-408|) + 1/(|98-32|) + 1/(|98-76|) +
1/(|98-211|) + 1/(|98-408|) + 1/(|156-32|) + 1/(|156-76|) + 1/(|156-211|) + 1/(|156-408|)
+ 1/(|332-32|) + 1/(|332-76|) + 1/(|332-211|) + 1/(|332-408|) + 1/(|450-32|) + 1/(|450-
76|) + 1/(|450-211|) + 1/(|450-408|) =

1/2 + 1/42 + 1/177 + 1/374 + 1/66 + 1/22 + 1/77 + 1/310 + 1/124 + 1/80 + 1/55 +
1/252 + 1/300 + 1/256 + 1/121 + 1/76 + 1/418 + 1/374 + 1/239 + 1/42 =

.5 + .024 + .006 + .003 + .015 + .045 + .013 + .003 + .008 + .013 + .018 + .004 +

.003 + .004 + .008 + .013 + .002 + .003 + .004 + .024 =

.709

131

This results in a total value of 20 + .709 = 20.709. Unfortunately, the

contribution made by the frequency measure is disproportionately large

relative to the contribution made by the proximity measure. Suppose we

would like each measure to contribute equally to the final values of the

relationship matrix. We have two choices: either magnify the effect of the

proximity measure, or reduce the effect of the frequency measure. We shall

choose to reduce the effect of the frequency measure.

What is the contribution made by each of the measures? We can

calculate this value for each measure from the data. Our data structure is a

Python dictionary where the keys are the terms that will become nodes in the

graph, and the values are a list of the positions in the document where the

term is found. Let us construct a simple example using three terms, ‘a’, ‘b’, ‘c’

randomly distributed in positions 1-9:

b a c b a c a b a

Data = {‘a’:[2,5,7,9], ‘b’:[1,4,8], ‘c’:[3,6]}

We can calculate the total frequency measure in this data set by finding

all the possible pairs of ‘a’, ‘b’ and ‘c’ (excluding self pairings). To do this we

simply multiply the number of positions of each term by the number of

positions of the other term (see Table 6).

Table 6 Frequency measure for example data

a b c
a 0 4•3=12 4•2=8
b 0 3•2=6
c 0

132

This give us a total contribution of 12 + 8 + 6 = 26 by the frequency

measure. To do this in Python, we can write:

terms = ['a','b','c']
pos = {'a': [2, 5, 7, 9], 'b': [1, 4, 8], 'c': [3, 6]}
freq_sum = 0
num_nodes = len(terms)
for eachterm in terms:
 next_node = terms.index(eachterm) + 1
 if next_node < num_nodes:
 rest_nodes = num_nodes - next_node
 for i in range(rest_nodes):
 freq_sum += len(pos[term]) * len(pos[terms[next_node]])
 next_node += 1
 else:
 break
print freq_sum

‡ 26

We can calculate the total proximity measure in this data set by a

different algorithm. This time, for each term pair occurrence, we calculate the

sum of the reciprocals of the differences. So, for example, to get the proximity

measure for the ‘bc’ pair, we would sum all the values bolded in Table 7:

Table 7 Proximity measures for example data

1(b) 2(a) 3(c) 4(b) 5(a) 6(c) 7(a) 8(b) 9(a)
1(b) 0 1 1/2 1/3 1/4 1/5 1/6 1/7 1/8
2(a) 0 1 1/2 1/3 1/4 1/5 1/6 1/7
3(c) 0 1 1/2 1/3 1/4 1/5 1/6
4(b) 0 1 1/2 1/3 1/4 1/5
5(a) 0 1 1/2 1/3 1/4
6(c) 0 1 1/2 1/3
7(a) 0 1 1/2
8(b) 0 1
9(a) 0

133

The total proximity measure is the sum of all values in the table above

that aren’t crossed out (crossed out values measure the proximity of self-same

terms). One way to implement the code is as follows:

terms = ['a','b','c']
pos = {'a': [2, 5, 7, 9], 'b': [1, 4, 8], 'c': [3, 6]}
prox_sum = 0
num_nodes = len(terms)
for term in terms:
 next_node = terms.index(term) + 1
 if next_node < num_nodes:
 rest_nodes = num_nodes - next_node
 for i in range(rest_nodes):
 for j in pos[term]:
 for k in pos[terms[next_node]]:
 prox_sum += 1.0 / abs(j-k)
 next_node += 1
 else:
 break
print prox_sum

‡ 13.45

In this simple and contrived example, the discrepancy between the

frequency (26) and proximity (13.45) measures isn’t nearly as pronounced as

in the earlier example (20 v. .709); however, this is due simply to the short

length of the sample: 9 positions. With normal length passages of hundreds

or thousands of positions, the frequency measure quickly overwhelms the

proximity one.

So, to normalize the contributions each measure makes to each

relationship matrix value, we simply calculate the proportion between the

two measures and multiply each corresponding frequency value to reduce its

134

effect. In this case, 13.45/26 = .517, so multiplying each frequency value by

this amount yields the values in Table 8:

Table 8 Normalized frequency measures for example data

a b c
a 0 6.208 4.138
b 0 3.104
c 0

This yields a sum of 13.45, which shows that the proximity and

frequency measures contribute equally to the final values of the relationship

matrix.

We can now combine these algorithms and generate a script to perform

all of the specified steps on an input file, in this case the text of a thread. This

results in a file containing the values of a Pathfinder proximity matrix that

can then be fed to a commercial program (KNOT, or Knowledge Network

Organizing Tool, or its [now discontinued] Macintosh version, MacKNOT)

which will generate a network from the data provided.

3.5 Thread Selection Results
So now there are two ways to evaluate a thread to get a summary of its

contents: a PhraseRate list of keyphrases, and a Pathfinder-based text graph.

As an example of the results from the two techniques, the text graph of one

thread, ‘Programming for fun’, is shown in Figure 15 while the PhraseRate

results of the same thread are shown in Table 9.

We see by inspection that one of the two central nodes in the graph,

‘mathematics’ is the same as the top ranked keyphrase. And one of the links

m
at

h
em

at
ic

s

pr
og

ra
m

m
in

g

be
h

av
io

r

le
ar

n
in

g

m
at

h

la
w

s

h
u

m
an

la
n

gu
ag

e

cu
rr

ic
u

lu
m va
n

il
la

co
re

te
ac

h
in

g

pr
ov

id
e

vi
ew

la
n

gu
ag

es ab
st

ra
ct

io
n

le
ve

lqu
ot

e

pa
tt

er
n

s dy
n

am
ic

de
sc

ri
be

in
fi

n
it

el
y

ab
st

ra
ct

ag
re

e
th

eo
re

ti
ca

ll
y

ex
am

pl
e

bo
okke

ls
o

or
ga

n
iz

at
io

n

re
ad

in
g

th
in

gs

pe
rs

pe
ct

iv
e

h
of

st
ad

te
r

co
m

pl
ex

sy
st

em
s

br
ai

n

m
in

d

n
eu

ro
n

s

le
ve

ls

F
ig

u
re

 1
5

T
ex

t
G

ra
ph

 o
f

‘P
ro

gr
am

m
in

g
fo

r
fu

n
’

th
re

ad

136

Table 9 PhraseRate keyphrases for sample thread

* mathematics
* infinitely abstract
quote by chris langreiter
nice quote by chris langreiter
* brain and behavior
* programming to math
* human behavior
* theoretically infinite
applying programming to math
joys of applying programming to math
* dynamic patterns
* mathematics and language
quote except
vanilla author
subsequent abstraction

(*phrases found as nodes or connected nodes in Fig. 15)

off of ‘mathematics’ is ‘infinitely’ ‡ ‘abstract’, corresponding to the second

highest ranked keyphrase. Other similarities can also be found, for example,

‘brain and behavior’ and ‘human behavior’ can be found as links in the text

graph, as can ‘dynamic patterns’ and ‘mathematics and language’. This

process of comparing the two result sets was repeated for a total of ten

threads, with comparable correlations. Thus, it appears that the results of

the two techniques begin to converge in their summarizing function. Since I

already had confidence in the text graphing technique (Walberg, 2002), I felt

that I could use the PhraseRate results to assist in evaluating the 150

candidate threads. (Unfortunately, the text graphing technique is

significantly more labor-intensive than the PhraseRate technique at present.

Even though the text graph results are somewhat richer and more visually

137

appealing, time constraints precluded their extensive use in the present

study.)

Given that the PhraseRate-generated key phrase results appeared to

offer a usable summary of the content of each of the threads, I re-examined

the 150 threads chosen earlier that were at least five messages long

consisting of at least three different posters. This included the threads from

the provisionally excluded categories (Editors, Graphics, Python & other

languages) to verify that none of the threads was particularly appropriate,

the included categories (Education, CP4E, Math-related, Science-related, and

Programming for fun) to verify that all of the threads were appropriate, and

especially the possible categories (Python/Computer Science, Miscellaneous,

and Unknown) where some threads were likely to be appropriate and some

not, but where the subject heading alone was insufficient. Perhaps the most

interesting category with respect to this procedure was the Python/Computer

Science one. It originally had 28 threads, but after consulting the key

phrases, I was able to discard almost half of them. This was primarily due to

the fact that the key phrases indicated whether or not the thread was likely

to concern itself with low-level syntax issues, or graphics issues, or esoteric

computer science issues or other issues that I had already determined fell

outside my purview. Likewise, the key phrases for the other two categories,

Miscellaneous and Unknown, allowed me to keep most of those threads, as

they indicated that their contents were likely relevant. This final winnowing

138

process resulted in the selection of 108 threads consisting of 1228 messages;

their subject headings are shown in Appendix A.

3.6 Data Analysis
At this point, I would like to describe how the kind of research I

conducted on the data is situated with respect to similar research methods.

The messages and threads were subjected to a computer-mediated content

analysis (CMDA). CMDA is not a theory or single method, but an approach to

analyzing the data:

CMDA applies methods adapted from language-focused disciplines such
as linguistics, communication, and rhetoric to the analysis of computer-
mediated communication (Herring, 2001). It may be supplemented by
surveys, interviews, ethnographic observation, or other methods; it may
involve qualitative or quantitative analysis; but what defines CMDA at
its core is the analysis of logs of verbal interaction (characters, words,
utterances, messages, exchanges, threads, archives, etc.). In the
broadest sense, any analysis of online behavior that is grounded in
empirical, textual observations is computer-mediated discourse analysis.
(Herring, 2004)

Herring goes on to emphasize that CMDA “is not a single method but rather

a set of methods from which the researcher selects those best suited to her

data and research questions.” CMDA can apply to any of four different levels

of language: structure, meaning, interaction, and social behavior. This study

focuses on the ‘meaning’ level of language, including “words, utterances …

and larger functional units (e.g., ‘macrosegments’)” (Herring, 2003).

Herring says that there are three theoretical assumptions underlying

CMDA:

139

• discourse exhibits recurrent patterns (“…patterns in discourse that are
demonstrably present, but that may not be immediately obvious to the
casual observer or to the discourse participants themselves.”)

• discourse involves speaker choices (“These choices are not conditioned
by purely linguistic considerations, but rather reflect cognitive and
social factors.”)

• computer-mediated discourse may be, but is not inevitably, shaped by
the technological features of computer-mediated communication systems

Of these, the first two assumptions are the most relevant for the present

study since I am not focusing on the effect of the medium on the message but

simply the messages themselves.

CMDA encompasses many research paradigms, including conversation

analysis, interactional sociolinguistics, critical discourse analysis, semantics,

pragmatics, text analysis, and others. For the purposes of the present study a

simple semantic content analysis was chosen. Lemke (1998) emphasizes

these ‘recurrent patterns’ in his discussion of semantic content analysis:

How can we characterise what a text says about its topics, or even what
its topics are, better or more concisely than the text does itself? This is
possible only to the extent that the text repeats the same basic semantic
patterns, makes the same basic kinds of connections among the same
basic processes and entities again and again. It happens, in our culture,
and probably in most, that not only do we repeat these thematic
patterns, or formations, again and again in each text, merely
embroidering on the details, we also do so from one text or discourse
event to another. … Thematic analysis, correspondingly, must be done
by hand, but it enables you to see that the same concept or relationship
may be expressed by many different verbal forms and grammatical
constructions, and to exclude cases where the form is right but the
meaning in context is not.

Each set of threads in a category was given a holistic reading where I

noted the salient issues as they arose. ‘Salience’ was subjectively determined

by a combination of my teaching experience (in English as a Second

140

Language) and my programming experience (including Python). As the

readings progressed, recurrent patterns germane to the topic were identified

and assiduously cultivated as they occurred in any of the messages of the

threads in a given category I then reread the threads as I addressed these

patterns searching for evidence in support of, and contrary to, each issue’s

essence. Next, we turn to the harvest of that cultivation.

141

CHAPTER 4

RESULTS

Most important of all, however, was the lesson that I learnt from
the study of people who create something in their lives out of

nothing—we termed them alchemists. They proved to me that you
can learn anything if you really want to. Passion was what drove

these people, passion for their product or their cause. If you care
enough you will find out what you need to know and chase the

source of the knowledge or the skill. Or you will experiment and
not worry if the experiment goes wrong. The alchemists never

spoke of failures or mistakes but only of learning experiments.
Passion as the secret of learning is an odd solution to propose, but

I believe that it works at all levels and all ages.

—Charles Handy, The Elephant and the Flea

4.0 Introduction
The sections of this chapter correspond to the categories identified in the

previous chapter: CP4E, Education, Python and Computer Science, Math-

related, Science-related, and Programming for fun; the two categories

Miscellaneous and Unknown are grouped together last. Each category is

introduced with the key phrases drawn from the subject lines and the

PhraseRate results that characterize the category. Subsections within each

section correspond to the recurrent patterns identified throughout that

category. A conclusions section is found at the end of each category.

142

Online discussions are usually informal, and posters are not usually

punctilious about their textual communications. In the many quotes in this

chapter, I have taken the liberty of ‘lightly cleaning’ the messages with

respect to spelling, grammar and punctuation in order to enhance readability

while retaining the author’s style and tone. I have occasionally inserted an

explanatory phrase in square brackets: []. Each posting has two capital

initials at the end to indicate the first and last name of the poster, followed

by a thread code (for example, ‘ED-5’) that refers to the thread the message

comes from and which is indexed in Appendix A, and finally an ordinal

number (like ‘3rd’) indicating which position in the thread the message

occupies. Where I refer to the ‘OP’, it stands for the thread’s Original Poster,

the person who started the thread.

Finally, at the end of this chapter, I review the results of the methods

and procedures used in processing the data.

4.1 Computer Programming for Everybody
This category concerns itself with threads that had either ‘CP4E’ or

‘non-programmer’ in their subject line. Computer programming for everybody

is an ambitious goal in the context of mass education. The term should

probably be read as ‘computer programming for everybody (who interacts

with a computing machine)’ but even this should be taken with a grain of

salt. (Recall the discussion of ‘multiple literacies’ and ‘multiple intelligences’

from Chapter Two.) If programming is to computer literacy what writing is to

143

print literacy, then we know that not everyone who is ‘literate’ can write and

not all who write can write well. Similarly, we should expect that many who

learn to program will not program well, or at all, after their efforts.

Nevertheless, the goal of CP4E is long-term rather than short-term, and its

adherents expect that programming will become much more mainstream

(like writing) than esoteric.

Programming and school subjects
The only major, recurring topic in these threads was the relationship

between learning to program and school subject matter. Many posters

emphasized that it was highly beneficial to teach Python in the context of

another subject:

I think the difference between ‘using Python to do X’ and ‘doing X to
teach Python’ really needs to remain front and center in this SIG. –KU,
CPE-1, 4th

I think CP4E needs to instead emphasize the interaction, i.e. you teach
programming by allowing the student to explore a subject area with a
programming language. –SM, CPE-1, 13th

The latter poster offered a linguistic analogy along with a short observation

that is worth repeating:

To me the language/subject dichotomy is a noun/verb, object/action kind
of thing. Python is the verb that acts on the subject being explored (the
noun.) You need to start with simple nouns and verbs and work up to
complex ones. The complexities of both need to go in parallel, especially
when you are trying to draw in the student in a single course or at a
single point of contact.

My late father-in-law was an impressive self-taught linguist. He started
with German, Latin and Greek in school and then taught himself to be
fluent in French, Spanish, Russian and Romanian and then to be able to

144

read technical work and poetry (!) in many other languages. He usually
learned a new language because there was something he wanted to read
in that language and he didn't trust the translators.

He was obviously gifted (his rote memory was phenomenal) but his
methodology was interesting. He said that instead of finding a language
tutorial/course etc. and learning to say simple but useless things he
started by trying to read a subject that he knew well, the more complex
the better as long as he already understood the complexities of the
subject. He said that his understanding of the subject gave him clues
that help him learn the language as it is used.

The same distinction shows up in trying to teach English writing skills.
It is much easier to teach students to write about something when they
have something to say. –SM, CPE-1, 13th

We see here a strong analogy with the traditional English class where it

not only is taught in a class itself but is also employed in some fashion in

most other academic classes. That is, students are expected to write not only

in English class, but also in Social Studies, Science, History, and Humanities

classes. Indeed, this is often one way teachers evaluate the degree to which

their students have assimilated the subject’s material. Similarly,

programming can certainly be taught in a Programming class (like English is

taught in an English class), but it should be employed in the other academic

areas as well: Mathematics and Science, of course, but also History,

Humanities, Social Studies and English. And then programming assignments

could be used by teachers as another, probably optional, method of evaluating

students’ knowledge of the subject matter.

The question of how to ‘bootstrap’ the learning to program process

appears in several threads. One, for example, begins by noting the value of

learning from ‘the masters’:

145

Personally I would love to spend a couple of hours sitting next to an
experienced Python programmer who could show for example the
process of putting together a program, testing it, shaping, how they
react to error messages, how they sculpt the code, how they might look
at the problem a couple of ways, how they use the tools, how many
windows [are] open, what they look at; the real-world rhythm of a few
hours in the life of a python program; even better if this was
intelligently structured and re-playable with examples. It would be nice
to have a human being talk and type me through some code.

Yes there is no substitute for hands-on learning/doing. But there is no
substitute for great teachers either! And since we don’t have the joys of
python class in school or at our corner adult-education center, we go to
the web and read and download and hack/explore till hopefully it clicks.
Some experienced folks can transfer their previous learning fast, but for
others who may have no experience or come from another background,
the first steps are very important. …

Lord I would love a Python video from the masters at work and play. In
any field there are rare few people who _really_ understand it, and even
rarer are the ones who can teach it. –JC, CPE-4, 1st

Of course, this presupposes that the masters are coding an application or

program in some domain, not in vacuo:

Sometimes I think what bogs people down is forsaking any knowledge
domain and trying to learn the ‘programming language’ as the generic
‘thing to know’.

More useful, I think, is to bring in a knowledge domain (some topic in
mathematics, a graphical challenge, some real problem needing a
solution), and then learn the language in tandem with that knowledge.
–KC, CPE-4, 3rd

Quite a few other posters echoed this sentiment, that the value of

learning to program is not intrinsic to programming itself, but that its value

is revealed in the context of learning other subjects. Even the subject line of

the thread these messages come from contains a related mantra: “learning to

teach/teaching to learn”! Or, for our purposes, we can say: “learning to

146

program/programming to learn”. The OP of this thread posted again several

messages later and offered an analogy with music education:

But as part of the big experiment where I am part observer, part guinea
pig, part instigator, I do feel that Python is very good language for
learning computer programming hands-on. Learning through python,
rather than learning python, if you see what I mean. Of course I want to
learn python. But I am interested to learn it in a way which goes beyond
that. …

Getting one's head around abstract structures is easier for many if there
are tangible metaphors like sounds or images which provide rapid
feedback. So many computer programming tasks or examples are based
on real-world problem solving, but in my opinion are not so good for
beginners: piping files around, making list boxes and yet another boring
little application is ok, but not very inspiring. I suspect music and
graphics for many are more motivating and encourage both abstraction
and real-world problem solving. This was part of the insightful premise
of LOGO after all.

[H]mm…Let's see, I am looking for metaphor... ok. You can learn a lot
about music sitting with a good piano teacher; you will learn some
piano, but the right teacher will use the piano to teach music structure,
composition, improvisation, style, etc. As I understand it this is what
underlies the CP4E idea and others. –JC, CPE-4, 6th (emphasis added)

Conclusion of computer programming for everybody
category

So, learning the Python language per se is more of a means than a goal

for many of the posters on the list. I draw this conclusion based on reading

several assertions of similar ilk, with no dissenting opinions proffered. By

identifying goals in other classes, programming can be taught as a means of

attaining those goals. By attaining those goals, programming is learned and

can be used to attain further goals, and, at the same time, furthering one’s

programming expertise. This dynamic is similar to way English works in

both English classes and other academic classes. It is also remarkably similar

147

to the core notion of the trivium that was introduced in Chapter Two:

“education concentrated on first forging and learning to handle the tools of

learning, using whatever subject came handy as a piece of material on which

to doodle until the use of the tool became second nature” (Sayers, 1948). The

collective agreement of these posters seemed to be that learning to program

as a means of enhancing the attainment of academic goals in other subject

areas was a recommended way of beginning to learn programming.

4.2 Education
The threads in this category were placed here by virtue of the following

list of terms, one or more of which occurred either in the subject line or in the

PhraseRate results:

• Education, elementary education, middle-school, high school, K-12
• Assignments, assigning homework, programming assignments
• Teacher, teaching
• Curriculum, lesson plan
• Pedagogy
• Socratic
• Beginner
• Course
• Learning
• Tutorial
• Students

In many ways, the threads concerned with education touched the heart

of this dissertation’s topic. Many issues were raised, and many of those were

simply raised without coming to any definite conclusion. Still other issues

generated opposing viewpoints, thoughtfully presented. The perspectives of

the posters ranged from “voice-of-experience” pragmatic to “flight-of-fancy”

148

idealistic, but all appeared united by both the desire to bring programming to

the masses, and overall admiration for the syntactic adroitness of the Python

language.

This category was by far the largest, both in terms of the number of

threads (33) and the number of messages (317). The issues covered here are,

in order of presentation, a) where and how programming can fit into a

school’s curriculum, b) infrastructural concerns such as curriculum materials

and Python’s modes of operation, and c) an extensive section on teaching

methodologies. Each of these subsections has its own set of sub-subsections,

illustrating the range of educational issues that were raised by the posters.

4.2a Where does programming ‘fit’ into a curriculum?
One of the more persistent concerns of the group was integrating Python

programming into a school’s curriculum. There appear to be three (two major

and one minor) paths to follow, with one of them proving to be exceedingly

difficult to navigate. The first path is to integrate Python into existing

classes. The second path is to create a Python programming class of its own.

And the third path is to create an after-school computer club. These paths are

not meant to be mutually exclusive, but rather, synergistically coexisting to

maximize the opportunity of promoting computer literacy among the student

populace.

149

Integrating Python into existing classrooms
One of the most visible obstacles to widespread use of Python in the

classroom is the Advanced Placement test for Computer Science since it is

only offered in the Java language. Thus, all AP classes use that language

either exclusively or primarily. However, it was generally agreed on the list

that educators were not seeking to convert the College Board to (at least)

allow the Python language into its AP test; they conceded, for the time being,

that Computer Science majors needed to know the language of the test.

Instead, since the audience of CP4E was ‘everyone’ other than CS majors, it

was deemed wise to introduce Python in a different context, for example,

Math class.

In many ways, this would seem to be logical, since computing depends

so strongly on mathematical foundations. Nevertheless, it is not easy to

accomplish. Let me illustrate with an admittedly long exchange from one of

the threads. There was an unusually sobering posting made by a high school

math teacher who, although she was strongly in favor of the goals of the

group and had made a valiant effort to implement reform in both her classes

and in her department, reported the difficulties she faced:

But what really shocked me was the experience I had today with my
colleagues when I tried to show it [using Python in the math classroom]
to them as something with great potential for help with understanding
algebra. I was just showing them how you could use it as something
better than a hand calculator for doing such things as solving equations
by searching, which I think is a really good idea for keeping students in
touch with the base meaning of solving equations. And one of my
colleagues practically expressed horror and said that this would totally
put him off of mathematics. And others expressed similar opinions. I

150

remember the first time I saw you [KU] write about how you could
define a function in the console mode, e.g. ‘def f(x): return x**2’, and
then proceed to evaluate it from a composition function, I immediately
thought that was just such a great way for students to see such things
right in front of their eyes, for it to no longer be abstract. But he seemed
to think it would take him hours to master the syntax of it and for the
students it would be just one more thing to learn when they were
already afraid of the subject. And partly from some of the reactions I
have gotten from students, it seems that he is likely to be right. For him
the fact that it there is a ‘:’ and a ‘return’ instead of just an equal sign
was totally daunting and the ‘**’ [exponentiation] makes it even worse.

So my question for you is have you found this kind of Python anxiety,
and if so how have you dealt with it? –SW, ED-27, 1st

This perfectly illustrates the resistance many math faculty (and faculty from

other subjects too) exhibit when faced with the prospect of integrating

computing into their curricula. I imagine this poster may have been hoping

for some simple solution to counteract these opinions, but there was only one

substantive reply to her concerns:

Re your specific questions, I have to confess up front that I have very
limited personal experience trying to phase in Python in the ways I
suggest. I would *like* to have more of these opportunities, but the fact
is that I am not now a classroom teacher (I used to be, but that was
many years ago). When I do get together in a room to present Python or
Python-related topics, chances are they're already sold on the program --
I'm mostly just preaching to the choir as it were. …

But with the math teachers, I think the reaction is coming from a
different place. If they're horrified by the colon and the return keyword
in Python, they'll be even more horrified by all the syntactical clutter of
any computer language -- even Mathematica, which has gone a long
way to accommodate traditional math notation. But as Wolfram points
out, traditional notation is ambiguous. Does s(x-1) mean the function s,
applied to x-1, or does it mean s times x-1? … Whereas humans can
tolerate a lot of ambiguity, owing to sensitivity to context, computers
cannot. And so in a lot of ways, computers force *more* precision on a
notation.

151

With math educators, it does no good to talk about Python's power and
sophistication vis-a-vis C++ and Java. Their beef is with the whole idea
of diluting the purity of their discipline with material from an alien
discipline, i.e. computer science and/or engineering. To start using a
computer language in an early math curriculum looks like the harbinger
of nothing good: it means math will become mixed up with all kinds
incompatible grammars which come and go, vs. the staying power of a
more stable, core notation. Plus if computer languages invade the math
classroom, then teachers will be forced to learn programming, which
many are loathe to take up. The hand held graphing calculator is as far
into computing technology as these teachers want to go, and even there,
their programmability is often ignored.

But not all math educators are on the same page here. Many recognize
the advantage of having an “executable math notation” vs. one that just
sits there on the printed page, doing nothing (except crying out to be
deciphered). Kenneth Iverson makes this point very clearly when he
writes:

It might be argued that mathematical notation (to be referred to as
MN) is adequate as it is, and could not benefit from the infusion of
ideas from programming languages. However, MN suffers an
important defect: it is not executable on a computer, and cannot be
used for rapid and accurate exploration of mathematical notions.
–Kenneth E. Iverson, Computers and Mathematical Notation,
available from jsoftware.com

It's this ability of computer languages to promote the “rapid and
accurate exploration of mathematical notions” which some of us find
exciting and empowering. …

Furthermore, one might argue that imparting numeracy is *not* limited
to teaching just those topics and notations most traditionally favored
within mathematics. It's about imparting some familiarity and
comprehension around *whatever* happen to be the culture's primary
symbolic notations (music notation included) beyond those which we
group under the heading of literacy.

We need to provide some exposure to computer languages because our
industrial society is completely dependent upon them, because they've
become ubiquitous.

We have the choice of segregating these topics from mathematics, just
as we've divorced mathematics from the physical sciences. But some
educators in every generation advocate curriculum integration through

152

cross-pollination, and to such educators, it makes perfect sense to meld
computer topics with math topics, with science and even humanities
topics (cryptography is a good example of where all of these converge).
In my view, the benefits to be obtained through synergy outweigh the
arguments of turf-protectors who would keep their respective disciplines
“pure”.30 –KU, ED-27, 2nd

Kaput, Noss and Hoyles (2002) agree with KU’s and Iverson’s notions of

an executable notation for learning math:

There are two key developments in a computational era: first that
human participation is no longer required for the execution of a process
and second, access to the symbolism is no longer restricted to a
privileged minority. (p. 12, .pdf version; original emphasis)

Doron Swade (2000) characterizes this separation of human participation

from the ‘execution of a process’ as an ‘ingression of machinery into

psychology’ when he describes Charles Babbage’s initial success at building

an automated ‘difference engine’ in 1832:

But with textile machines, trains, and all the other wondrous
contrivances that poured off the drawing boards of inventors and from
the manufactories, the human activity they relieved or replaced was
physical. Babbage’s engine was a landmark in respect of the human
activity it replaced. It was the first ingression of machinery into
psychology. (p. 84)

Furthermore, this separation of execution and human participation

accomplishes two functions: one, it overcomes the barrier to learning the

“coupling” between physical phenomena and their static, symbolic

mathematical representations; and two, it redefines what mathematical

30 This thread was continued by the group several months later, outside the scope of the data.
However, since the exchange continued to be so thoughtful, it is reproduced in Appendix D.

153

knowledge becomes necessary to learn now that machines can execute the

symbolic manipulations:

The close relationship of knowledge and its culturally-shared preferred
representations, precisely the coupling that has produced such a
powerful synergy for developing scientific ideas since the Renaissance,
became an obstacle to learning, and even a barrier which prevented
whole classes from accessing the ideas which the representations were
so finely tuned to express.

While the execution of processes was necessarily subsumed within the
individual mind, decoupling knowledge from its preferred
representation was difficult. But as we have seen, this situation has now
changed. The emergence of a virtual culture has had far-reaching
implications for what it is that people need to know, as well as how they
can express that knowledge. We may, in fact, have to reevaluate what
knowledge itself is, now that knowledge and the means to act on it can
reside inside circuits that are fired by electrons rather than neurons.
Key among these implications is the recognition that algorithms, and
their instantiation in computer programs, are now a ubiquitous form of
knowledge, and that they—or at least the outcomes of their
execution—are fundamental to the working and recreational
experiences of all individuals within the developed world. (Kaput, Noss
and Hoyles, 2002, p. 14, .pdf version; original emphasis)

Through their SimCalc Project,31 they offer a glimpse at what the new

knowledge representations to be taught might consist of:

Over the past two decades, the character string approaches to the
mathematics of change and variation have been extended to include and
to link to tabular and graphical approaches, yielding the “the Big Three”
representation systems, algebra, tables, and graphs frequently
advocated in mathematics education. However, almost all functions in
school mathematics continue to be defined and identified as character-
string algebraic objects, especially as closed form definitions of
functions—built into the technology via keyboard hardware. In the
SimCalc Project, we have identified five representational innovations,
all of which require a computational medium for their realization but
which do not require the algebraic infrastructure for their use and
comprehension. The aim in introducing these facilities is to put

31 http://www.simcalc.umassd.edu/

154

phenomena at the center of the representation experience, so children
can see the results, in observable phenomena, of their actions on
representations of the phenomenon, and vice versa. (p. 18, .pdf version)

Finally, Kaput, Noss and Hoyles describe how the power of calculus is

embedded in their new representational systems, and how that power is a

natural extension of the power conferred by arithmetic and algebraic

systems:

A key aspect of the above representational infrastructure is revealed
when we compare how the knowledge and skill embodied in the system
relates to the knowledge and skill embodied in the usual curriculum
leading to and including Calculus. At the heart of the Calculus is the
Fundamental Theorem of Calculus, the bidirectional relationship
between the rate of change and the accumulation of varying quantities.
This core relationship is built into the infrastructure at the ground level.
Recall that the hierarchical placeholder representation system for
arithmetic and the rules built upon it embody an enormously efficient
structure for representing quantities (especially when extended to
rational numbers) which in turn supports an extremely efficient
calculation system for use by those who master the rules built upon it.
This is true of the highly refined algebraic system as well. Similarly,
this new system embodies the enormously powerful idea of the
Fundamental Theorem in an extremely efficient graphically
manipulable structure that confers upon those who master it an
extraordinary ability to relate rates of change of variable quantities and
their accumulation. In a deep sense, the new system amounts to the
same kind of consolidation into a manipulable representational
infrastructure an important set of achievements of the prior culture that
occurred with arithmetic and algebra. (p. 25, .pdf version)

It may well be that these arguments and ideas would be best applied in

teacher education classrooms. Yet the software Kaput, Noss and Hoyes

describe is freely available for download by any Mathematics instructor,

along with several units to get started with. Nevertheless, as the posters’

messages illustrate, there is considerable resistance to attempts to persuade

high school faculty to begin using machine-executable notation in their

155

classrooms. Postrel (1998) brings this resistance into sharp relief on a larger

stage than education:

How we feel about the evolving future tells us who we are as individuals
and as a civilization: Do we search for “stasis”—a regulated, engineered
world? Or do we embrace “dynamism” —a world of constant creation,
discovery, and competition? Do we value stability and control, or
evolution and learning? Do we declare that “we're scared of the future,”
decrying technology as “a killing thing”? Or do we see technology as an
expression of human creativity and the future as inviting? Do we think
that progress required a central blueprint, or do we see it as a
decentralized, evolutionary process? Do we consider mistakes
permanent disasters, or the correctable by-products of experimentation?
Do we crave predictability, or relish surprise? These two poles, stasis
and dynamism, increasingly define our political, intellectual, and
cultural landscape. The central question of our time is what to do about
the future. And that question creates a deep divide.

This divide is evident in the willingness teachers have of adopting

programming in their classrooms and changing the way they teach their

subjects to their students.

Creating new Python programming classes
If Python cannot be readily introduced into typical AP classes, and if

teachers of other subjects have concerns about adopting a programming

language in their curricula, another alternative is to create an independent

(non-AP or pre-AP) programming course centered on Python. The resistance

here comes primarily from school administrators, but several posters have

reported success at initiating and sustaining such courses in their schools,

and the evident enthusiasm of both students and teachers help to grow the

number of sections. A list of such schools is posted at the PyBibliotheca32

32 http://www.ibiblio.org/obp/pyBiblio/

156

website. One in particular, Yorktown High School, Arlington, VA, deserves

mention because the teacher who spearheaded Python’s adoption in the

curriculum, Jeffrey Elkner, has presented his experiences at two Python

conferences (Elkner 2000, 2001). Elkner, in collaboration, has also ported a

textbook, How to Think Like a Computer Scientist, from its original language,

C++, to Python so that beginning Python programming courses now have at

least one textbook to choose. These and other resources are listed in

Appendix B.

After-school computer club
A few posters related their experiences of running after-school computer

clubs. These seemed especially to cluster in the middle schools, where AP

classes don’t exist, nor any official programming classes (at least, none that

were mentioned). These clubs appear to fulfill a felt need for exercising and

developing young adolescents’ programming abilities. Many posters

underscored the importance of learning Python as a first language, so getting

in on the ground floor at this age level seems especially appropriate.

Therefore, the path of least resistance to integrating Python in the

school curriculum appears to be: begin with computer clubs in the middle

schools that use Python as the primary language for doing projects of interest

to the club members. That can then lead to Programming classes in the

middle school curriculum. Alternatively, a teacher or group of teachers might

institute a Programming class in their high school to build on the

157

programming club experiences of the middle-schoolers, as well as to introduce

programming to the newcomers. Recalling Postrel’s distinction between those

who search for stasis and those who embrace dynamism, educators who are

concerned about promoting programming skills in their students must not be

“scared of the future” but instead “see technology as an expression of human

creativity” while simultaneously attempting to persuade their more fearful

colleagues to learn how to “relish surprise,” the surprising programming

accomplishments their students can provide.

4.2b Infrastructure
Having gotten approval for such a class (or club), however, a teacher is

still faced with challenges. We assume that hardware and software are not

part of these challenges (although minor issues, of course, may occur). Most

schools have some computers available, and the freely available Python

language (and likewise the Linux OS) is almost certainly capable of running

on whatever machines a school has. These requirements are modest and are

assumed in the discussion that follows.

It is also assumed that the schools have some sort of networking system

in place with (at minimum) a file server and perhaps a web server, and that

the teachers involved with teaching programming feel comfortable using the

school’s network and can readily integrate it into the flow of creating,

running and storing scripts that their students work with. One of the more

advanced questions the group considered was whether or not to use a CVS

158

(Concurrent Versions System), or equivalent, with the class (this would

require a CVS server) and such capabilities are not assumed, but may be

worth supporting in a productive, learning programming, environment.

In this section we look at two aspects of a programming class’

infrastructure: the available curriculum materials, and the distinction

between the interactive shell and standalone scripts within the Python

programming environment.

Curriculum materials
One striking need that emerged from several discussion threads was for

texts and lesson plans. Since the idea of teaching programming using Python

is relatively new (compared with, say, LOGO), there is a dearth of teaching

materials available. There is plenty of Python-related and programming-

related material, but very little specifically targeted for classroom use. Many

available texts assume prior programming experience, and the ones that

don’t are either reference-type compilations or tutorials meant for self-paced

study. During the course of these conversations, a small group of interested

teachers formed an auxiliary website (the aforementioned PyBibliotheca)

which aims to be a repository specifically for teaching materials such as

lesson plans and online textbooks. The site also contains a list of schools that

teach Python and includes a fun, 24 minute MPEG video called “Introducing

Python” (Python Software Foundation, 2001). Nevertheless, teaching Python

in schools is currently a niche activity, so Programming teachers still largely

159

have to gather materials piecemeal, or create their own. For an example

where this was successfully accomplished at the undergraduate level, see

Shannon (2003).

Shells and scripts
Once a teacher is ready to begin teaching, an important distinction to

make from the very beginning is one that is embedded into the very design of

the Python language itself, and one that was strongly emphasized by many

members of the group. There are two ways to ‘talk’ to the Python interpreter:

through the shell (aka the interactive interpreter), and through scripts (text

files stored on the computer’s file system). Using the shell is a bit like talking

directly to Python: you enter a statement or an expression at the prompt

(>>>) and Python responds, for example:

>>> print 'The equator is about 25,000 miles long.'
The equator is about 25,000 miles long.
>>>

The shell ends with another prompt when it finishes responding. This

experience is like a conversation in another way—no record of the interaction

is stored. If you have built up a set of commands that does what you seek, you

must save those commands in a separate file. This file is then a script that

can be run by the interpreter (either by double-clicking it, or calling it from

the shell).

The shell is an invaluable tool for exploring the Python language and for

debugging smaller sections of larger scripts. A student’s initial exposure to

160

Python, it was argued, should be through the shell; one gets immediate

feedback as to the success or failure of what one has written:

What I don't like are teaching approaches heavily influenced by C or
Java which pretend you can only write scripts/programs, and don't
explore the interactive potential of a command line environment [shell].
Yet the latter is a wonderful scratch pad in which to test/learn the
basics of the language, with immediate feedback. To bypass the shell is
to make a huge pedagogical error, IMO. –KU, ED-26, 14th

I consider the Python shell to be the primary interface (in terms of
importance) for the Python code I'm developing. ... To me, the
interactive Python shell is just as important and significant a feature of
Python as the clear, elegant syntax. –PO, MISC-4, 24th

The shell is also the place the official Python tutorial begins. Since using

the shell is considerably easier to do than to explain, perhaps a quick

example would be beneficial. The following transcript comes from a short

shell session; ‘>>>’ is the shell prompt that means “it’s your turn; I’m

listening” followed by commands typed by the user. The Python interpreter’s

replies are on lines following the commands:

>>> 2+3
5
>>> 15*8
120
>>> 8-80
-72
>>> print "Even 'quoted text' can be displayed!"
Even 'quoted text' can be displayed!
>>>

One can have shell sessions where the ‘commands’ stretch over more

than one line; in that case the interpreter offers a different prompt (‘…’) to

indicate “Yes, I hear you; I’m waiting for you to finish”. This example

161

constructs a loop that squares each number in a list, puts it into another list

and prints the result:

>>> list_of_numbers = [20, 21, 22, 23, 24, 25]
>>> list_of_squares = []
>>> for each_number in list_of_numbers:
... square_number = each_number**2
... list_of_squares.append(square_number)
...
>>> print list_of_squares
[400, 441, 484, 529, 576, 625]
>>>

Using the interactive interpreter is a great way to introduce the Python

language to beginners because there is so little ‘mechanism’ between the user

and the interpreter; it is quite easy to get successful results virtually

immediately. And having learned to use the shell, it becomes indispensable

once you start writing longer programs where debugging a small but crucial

area is unwieldy in the context of the whole script, but is quite manageable in

the shell.

Of course, the downside to the shell is that once one quits the session,

all the typing that was done has been lost. If you have created a set of

commands that you expect to run at a later time, those commands need to be

saved as a script, which is simply a text file with a name that ends with the

.py extension. This requires a text editor of one sort or another; there are

many appropriate ones available that work well with Python. Choosing the

right one is usually a matter of taste and experience.33 Once the script has

33 Python comes with IDLE (an Integrated DeveLopment Environment) which serves both
functions, shell and editor.

162

been saved, the Python interpreter can execute that file either by double

clicking it or calling it from the shell. So, much of one’s day-to-day

programming experience becomes that of editing a script and executing it to

see what changes need to be made, and also going to the shell to work out the

details of some portion of the larger script. However, to emphasize, before

introducing the notion of scripts, it is important to become facile with the

shell so that this valuable way of interacting with the interpreter is not

ignored by the student programmers.

4.2c Teaching methodologies
Many discussion threads revolved around notions of ‘how’ and ‘what’ to

teach in the classroom. Many issues were raised, and experiences were

shared that were meant to shed some light on those issues. What follows is

certainly not an exhaustive listing of all the issues a programming teacher

might face, nor are all the issues discussed in the forum included; however,

those that are included seem to have qualified by virtue of the passion

exhibited by the posters or the logic evident in their stories. The following

subsections include: involving the student’s interests, different programming

styles, learning by doing, the Socratic method, encouraging planning, and

homework and grading.

Involving the student’s interests
True to the spirit of CP4E, there was a marked emphasis on involving

the student’s own interests in programming exercises. At the same time, it

163

was recognized that when one is beginning to program, one doesn’t know how

to use programming to further one’s interests in a (non-programming) topic.

One needs to ‘grow’ into it, and there was some discussion as to what can be

done to sustain students’ interest in programming during that awkward

beginning growth phase. This is partially a question of motivation, and

partially one of seduction. To a certain extent, one can rely on motivation by

assuming a certain degree of voluntary participation in an elective class by

students who are intrinsically motivated to learn how to program. For those

whose intrinsic motivation is not sufficient to get through the initial growth

phase, teachers need to involve them in activities which have ‘extrinsic’

motivation, that is, objectives that are interesting in their own right. The

domains of these objectives could be, for example, textual manipulation,

mathematical calculation, scientific simulations or even designing graphical

games.

One technique to maintain interest is to develop a very simple program

that everyone can do and understand, and then gradually add features to the

program as new programming constructs are introduced:

I'm interested in doing some kind of iterative instruction using one
project to illustrate a lot of the characteristics and functionality of the
language. For example (after Lutz):
- start with a simple, hard-coded dictionary of names/addresses (an
address book). Print them out.
- add a simple, text-based UI, allowing user to add, delete, edit entries
(input/output/UI)
- complexify the data stored and move to file based storage (file io, data
stores)
- add ability to sort (without built-in methods, to learn the algorithms)

164

- add ability to find (more algorithms)
- then, move to a GUI?
and then....
(I've got lots of ideas - net-based sharing, file input/output, move to a
web-based CGI system, etc - just wondering what people think. Also,
would this excite students?) –RR, ED-19, 1st

This theme was echoed with other similar designs based on, for example, an

employee database and building up a game. However, one poster warned:

I think this is okay, and students like it, but I'd caution to not have it be
your /only/ set of examples. It seems to work for me if you occasionally
say “okay, now let's come back to our XXX” but it's too much if the single
“theme” is the only thing you're showing. –MW, ED-19, 2nd

Alternatively, a teacher can begin with numerous small programs and

when the students are savvy enough, introduce a larger project that ties

various concepts together. One poster raised the issue as follows:

Looking through some of the edu-sig posts … I'm seeing that assigning
students a large project seems to be more popular than assigning a
number of smaller, more pedantic problems. What is the rationale
behind the larger projects as opposed to smaller projects? What are the
benefits and drawbacks of asking students to spend a week on one large
project instead of that same week on three or four smaller tasks, then
giving a large task once a month or so? I've been using what I consider
to be smaller projects … and am wondering if fewer, larger projects
would be better for my kids. –BE, ED-23, 1st

The responses were quite consistent:

I did many more small assignments at the beginning of the year--little
functions for programs that could be completed in twenty minutes or so.
Now that my students have been exposed to most of the Python syntax,
I have them working on larger assignments that are really just a bunch
of little ones glued together. Plus, the larger projects tend to be more
interesting for the students. –TW, ED-23, 2nd

What I do first is assign small exercises from each chapter, and then
assign a big project. ... There are two very good reasons for doing bigger

165

projects:
1. The ability to write meaningful programs should be a primary
teaching goal. Academic programs have often come under criticism by
industry for not preparing students for “real world” programming. There
is a natural tendency in academia to focus on small examples that make
the concept transparent without confusing learners with extraneous
details. The problem is students come away with no understanding of
the software development process itself. Their learning doesn't scale up
to bigger problems. This is also the motivation for the case study now
used in the Advanced Placement program.
2. Big projects are Cool! My experience is that students like them
because they solve more interesting problems. –JE, ED-23, 3rd

Since I believe that programming is a craft (not an art or science) we
call our after-school programming club a Guild. Apprentices learn what
the tools are and how to use them. Journeymen work on small projects
at my suggestion or as part of a larger project. At this stage they are
developing their craft and learning the why of their tools. Once they
demonstrate an understanding of programming they become a Master.
As a Master they write their own programs and ask teachers if there is
something that they could develop for them and their classes, such as a
physics simulator or the animal game for understanding classification.
All this apprentice, journeyman, master stuff is informal, I don't give
tests or allow hazing, the students seem to know what level they are.
–JS, ED-23, 6th

Yet another technique suggested, which might help bridge the gap between

small and large projects, was to learn from already functioning code:

Don't ask them to face a blank page.
If it’s Game of Life, start them with functioning code and challenge
them to extend it in some fairly specific way.
If it’s graphics, start with functioning code that draws lines, ask them to
draw boxes and circles.
Even at high levels of programming, few people are asked to face the
blank page. One is extending, optimizing, debugging, porting, etc.
Give them something broken to fix. Plant a few bugs.
But don't ask them to face the blank page. –AS, ED-14, 8th

This sentiment was echoed by:

I think when it comes to teaching Python, you need to have some source
code that already does some fairly interesting stuff which you then
dissect, i.e. students learn to read working source and understand what

166

it's doing before they try to tackle coding a program of similar
complexity ab initio. Reading well-written code and understanding why
it works is an important aspect of learning to program. –KU, ED-11, 2nd

In addition, some posters mentioned that virtually all real-world

programmers use modules in their projects. These are simply a collection of

functions bundled into a file that offer useful procedures for accomplishing a

necessary but (usually) tedious task. Learning how to import and use

modules is a necessary skill for any Python programmer, and once mastered,

can lead directly to larger projects without having to code all the functionality

in the modules oneself.

This latter poster also advocated finding that ‘extrinsic’ motivation in

the coursework of the students’ other classes:

What I would suggest is you find out what these same students are
learning in other course work, and try to play off that. Allude to their
other subjects or tackle them directly. Whatever they're doing in math
these days, do something in the same ballpark in Python. But you
needn't limit yourself to math. There should be some angles on other
subjects as well, e.g. if they're reading a novel, copy a paragraph from it
and encrypt it (simple letter substitution), or if they're learning some
history, try to figure out how many days have passed since some event.
… The idea is to have what's going on in programming reinforce
whatever content is already filtering through their minds anyway. That
definitely includes whatever they're learning in math, but there's no
need to limit your scope to that exclusively. –KU, ED-11, 5th

Thus, when structuring the curriculum of a programming class, these

educators recommend beginning with small programming tasks that

gradually increase in size and complexity and lead to a larger project that has

greater interest for the students. If possible, many of the smaller tasks

should center on the same application, which then ramifies as it matures.

167

Alternatively, these projects should relate to the students’ coursework in

other classes, so that their ‘learning to program’ efforts lead to ‘programming

to learn’ results.

Different programming styles
As discussed in Chapter 2, there are three broad styles of programming:

procedural (also called imperative), functional, and object-oriented (OO).

There was some discussion as to when these different styles ought best to be

introduced to students, but these discussions primarily centered on when to

introduce OO programming v. procedural programming; functional

programming was not, as far as I could tell, advocated as a beginner’s style.

Python is somewhat special as a computer language in that it handles all

three styles adroitly; it doesn’t coerce the user into preferring one style over

another.

There were two clear positions with respect to teaching OO

programming. One position suggested teaching OOP from the beginning;

while the other position preferred beginning with a procedural approach and

then later introducing OOP. Those who advocated OOP from the beginning

had this to say:

I've been trudging through Yourdon & Coad's *Object-Oriented
Analysis* of late, and they had an interesting point on teaching OO:
their experience is that old-style programmers brought up in a COBOL
world have a really hard time “getting” OO, but non-programmers—in
their context, it was marketing and sales staff, but it could be
anyone—“get it” immediately.

168

Another point they drive home again and again is that
“generalization/specialization” and “whole/part structures” are not just
pie-in-the-sky abstractions dreamed up by CS professors, but two of the
fundamental techniques used in human thought. Duh! Of *course* they
are, but I never really saw it that way before, since I grew up in a pre-
OO world (Pascal and BASIC) and had to learn it through the same
artificial examples (biological taxonomy and a graphics library) as
everyone else.

I think this argues that OO concepts should be built in from the start, if
possible. –GW, ED-1, 3rd

> > Don't you think classes are as easy as variables?
> No, they're not. …
That's funny. My experience was quite different. When I first saw
objects and classes it was like a revelation from God. They seemed
intuitively obvious and the answer to my prayers. I wonder if this is a
right brain/left brain thing or something. –SM, ED-1, 5th

I was suggesting that both the OOP paradigm, and the functional
paradigm, as well as the more classic procedural paradigm, all intersect
in Python, and it's worthwhile to not just seize on the procedural alone.

One should “get in on the ground floor” with OOP and functional
concepts as well. Primitives which take functions as arguments, like
map, reduce and apply, are good examples of functional concepts.

I think there's a danger in having people most comfortable with
procedural programming inadvertently depriving newbies from
accessing alternative philosophies that are just as basic in their own
way.

I think an intro course that focuses on basics might do well to actually
spend some time on these broad brush stroke concepts: procedural,
functional and object oriented, using Python examples to illustrate
what's meant. –KU, ED-32, 6th

From these and other postings it is clear that the normal way to introduce

programming is to use a procedural style. So, introducing OO programming

early on is a slightly radical departure from how things are normally done.

For some advocates, this was a philosophical position, for others a

169

psychological one. The philosophical reasoning was based on a holistic

viewpoint that one begins with an entirety and then creates subclasses of

special case instances, akin to the way OO programming itself proceeds. The

psychological advocates felt an immediate kinship with OO programming

when they learned it, and didn’t want to deny others the same pleasure.

However, not everyone was convinced:

> Don't you think classes are as easy as variables?
No, they're not. Maybe the theory is as easy as a variable, but the
practice isn't. It took quite long for me to find out when to use classes.
And multiple inheritance still struggles me, and private methods (__aaa
changes to whatever but still isn't private?). I think we shouldn't be too
fast with classes. We _can_ explain how to use them (jan = Turtle(100,
200)), but subclassing is not easy to explain. –GH, ED-1, 4th

And, in fact, my experience has been that OO programming is rather

more difficult to learn than procedural, although learning it in Python is

vastly more approachable than in other languages. Having weighed the

various arguments presented by the posters as to when to introduce OOP, it

seems most prudent to begin a programming course by teaching procedural

programming and get a solid grounding in that. However, it seems critical to

then include OO programming during, say, the second semester (of a year’s

class). Since much of the inner workings of the Python language is grounded

in the OO programming style, it behooves the curriculum designer and

classroom teacher to make that style explicit. Furthermore, it seems that a

sizeable percentage of the students will gravitate towards OOP (for

philosophical or psychological reasons), and those that prefer the procedural

170

style will at least be aware of OOP if it becomes necessary to use it later.

Bruno Preiss (2004) reinforces the need to learn OOP early on:

I have observed that the advent of object-oriented methods and the
emergence of object-oriented design patterns has led to a profound
change in the pedagogy of data structures and algorithms. The
successful application of these techniques gives rise to a kind of
cognitive unification: Ideas that are disparate and apparently unrelated
seem to come together when the appropriate design patterns and
abstractions are used.

This paradigm shift is both evolutionary and revolutionary. On the one
hand, the knowledge base grows incrementally as programmers and
researchers invent new algorithms and data structures. On the other
hand, the proper use of object-oriented techniques requires a
fundamental change in the way the programs are designed and
implemented. Programmers who are well schooled in the procedural
ways often find the leap to objects to be a difficult one.

It appears that one reason OOP is so appealing to some programmers is

that it exercises a kind of cognitive-artistic talent. It takes a certain inner

perspective to see where the natural boundaries of a problem are and to

construct objects that reflect those edges. What we need to keep in mind is

that programming can appeal to artistic types; perhaps we could call them

‘cognitive artists’!

I find the suggestion interesting that experienced programmers often
have more difficulties with objects than beginners. That isn't my
personal experience but I have heard it said many times.

BTW this topic may seem a little off point except that we need to teach
people with different learning strategies. There is a tendency of
programmer types to use left-brain teaching techniques and thus lose
half their audience out of the gate. Anyone who has ever sat in front of a
room full of young students knows that there are as many learning
strategies as there are students. CP4E needs to be sensitive to this or it
will be one more also-ran strategy. –SM, ED-1, 10th

And for those fortunate enough to ‘get it’, perhaps nirvana is within reach:

171

I'd studied objects before Python, but Python transformed my perception
of them. Now they make sense. Only I think that objects and classes are
as pure an expression of the Buddha nature underlying all existence as
you can find outside of a Tibetan monastery. –IL, ED-1, 8th

Not all students take well to a formal, analytic approach to

programming. Seymour Papert addresses another difference in programming

styles:

The simplest definition of constructionism evokes the idea of learning-
by-making and this is what was taking place when the students worked
on their soap sculptures. But there is also a line of descent from the
style idea. The metaphor of a painter I used in describing one of the
styles of programmer observed at the Lamplighter school is developed …
in two perspectives. One (“bricolage”) takes its starting point in
strategies for the organization of work: The painter-programmer is
guided by the work as it proceeds rather than staying with a pre-
established plan. The other takes off from a more subtle idea which we
call “closeness to objects”—that is, some people prefer ways of thinking
that keep them close to physical things, while others use abstract and
formal means to distance themselves from concrete material. Both of
these aspects of style are very relevant to the idea of constructionism.
The example of children building a snake [using LEGO/Logo] suggests
ways of working in which those who like bricolage and staying close to
the object can do as well as those who prefer a more analytic formal
style. (Harel and Papert, 1991)

The distinction here is between top-down and bottom-up programming,

where a bottom-up style of programming is favored by the bricoleur and those

wanting to stay ‘close to objects’, while top-down is the ‘more analytic formal

style’. So not only does the teacher need to consider how to sequence

procedural and object-oriented styles of programming, but also how to

accommodate both top-down and bottom-up styles of development.

Before leaving this topic, I would like to offer an exchange that occurred

on a different, but related, mailing list (python-tutor) that illustrates the

172

relationship of OOP and procedural programming in practice. Although we

aren’t directly considering creating graphical user interfaces, keep in mind

that OOP is the preferred style for such programming:

Hi, I have been studying python for a month or so now and have written
a few small apps the main being a ~300 line application. I am finding as
I work through things that I am coding in a procedural way, and then
going back over the code and recoding parts into an OO model. Is this a
normal progression, or should I be trying to force myself into an initial
OO model, my brain just doesn't seem to think like that, and I have
work through a procedural method to actually solve the problem. Do
experienced programmers find this sometimes also? –R

My non-guru opinion is that some small things lend themselves better to
procedural solutions than OOP ones, even if it were just because it
requires less typing. Big programs however are better as OOP than
procedural. Exactly where the boundary is, depends on the application.
–A

I found something similar, at first. I was never formally taught OO, and
my programming experience was mainly fortran, pascal, perl, IDL, and
assembler; the whole OO thing was a mind twister. But increasingly it
feels more natural, and python made the transition reasonably painless.

Several factors helped me make the jump: a big-ish project, a GUI
interface using wxPython, and several weeks of uninterrupted time to
work on it. The GUI bit was both the most frustrating and the most
helpful (wxPython is big, but is easier if you think OOP).

I started doing things procedurally, but the GUI bit slowly helped me
understand the OO paradigm and forced me to begin making my own
classes. I rewrote my procedural code into some classes, making it much
easier to fit it into the wxPython framework.

I still think procedurally, but I no longer hesitate to create my own
classes. Lots left to learn, but in three weeks I've come a long ways. I
couldn't have come this far in C++ or Java. –KF

173

Here, too, we see support for beginning with a procedural style for smaller

applications and then segueing into an object-oriented style for larger

projects.

The functional programming style was not much discussed. Although

Python supports it, there are other languages that support it better (e.g.

Scheme or Haskell). One highly regarded poster emphasized that functional

programming was largely the domain of computer science and that:

If the goal [of CP4E] is primarily to teach practical programming skills,
best to forget them [functional idioms] entirely! They add no power to
Python, and the testimony of “almost all” posters to c.l.py [the python
newsgroup] over the years who have addressed this issue is that a
straight Python loop [procedural style] is easier to write, and to
understand later, and *much* easier to modify later. –TP, ED-1, 13th

Nevertheless, it is also claimed that there are some computing problems

which are much more difficult to solve procedurally instead of functionally, so

it may be worth learning at least a little about it.

Learning by doing
Writing software falls squarely in the domain of constructionism.

Students are constructing actual, real-world artifacts that can be shared with

others. Harel and Papert (1991) distinguish constructionism from

constructivism:

Constructionism--the N word as opposed to the V word--shares
constructivism's connotation of learning as “building knowledge
structures” irrespective of the circumstances of the learning. It then
adds the idea that this happens especially felicitously in a context where
the learner is consciously engaged in constructing a public entity,
whether it's a sand castle on the beach or a theory of the universe.

174

As was mentioned in Chapter Two, Papert goes on to distinguish between

constructionism and instructionism. Each embodies a different theory for the

transmission of knowledge: whereas instructionism favors a pipeline model of

transmission, constructionism favors, shall we say, a self-organizing model of

transmission (knowledge self-organizes as the learner engages with

construction activities). These are not meant to be seen in opposition, rather,

the inclusion of constructionist methods is meant to bring about real reform

in our educational processes:

I do not mean to imply that construction kits see instruction as bad.
That would be silly. The question at issue is on a different level: I am
asking what kinds of innovation are liable to produce radical change in
how children learn. Take mathematics as an extreme example. It seems
obvious that as a society we are mathematical underperformers. It is
also obvious that instruction in mathematics is on the average very
poor. But it does not follow that the route to better performance is
necessarily the invention by researchers of more powerful and effective
means of instruction (with or without computers).

The diffusion of cybernetic construction kits into the lives of children
could in principle change the context of the learning of mathematics.
Children might come to want to learn it because they would use it in
building these models. And if they did want to learn it they would, even
if teaching were poor or possibly nonexistent. Moreover, since one of the
reasons for poor teaching is that teachers do not enjoy teaching
reluctant children, it is not implausible that teaching would become
better as well as becoming less necessary. So changes in the
opportunities for construction could in principle lead to deeper changes
in the learning of mathematics than changes in knowledge about
instruction or any amount of “teacher-proof” computer-aided instruction.

We will see some examples and suggestions along these lines in the sections

on Math and Science.

It is curious that the word instruction also means a command issued by

a software program to the underlying hardware processor that carries out the

175

instruction. With this sort of connotation, it may well be prudent, if we wish

to avoid turning our students into automatons, to gravitate more towards a

constructionist style of teaching, to which learning computer programming,

indeed any language learning, lends itself. Instead of teachers issuing

instructions, they can offer construction environments that are more

conducive to their students’ personal growth.

The spirit of this distinction is also made by Goodman (1995) in his

discussion of metaphoric games:

The distinction between being instructive and being provocative lies at
the heart of Cornell West’s (1989) argument in The American Evasion of
Philosophy in which he makes the claim that it is Ralph Waldo Emerson
who ushers in that bastion of American philosophy known as
pragmatism, the kind of thinking pursued by William James, John
Dewey, and, of late, Richard Rorty. “The primary aim of Emerson’s life
and discourse is to provoke; the principle means by which he lived,
spoke, and wrote is provocation. At the ‘center’ of his project is activity,
flux, movement, and energy” (West, 1989, p. 25). Nothing could be more
important than making this distinction between instruction and
provocation when it comes time to make claims about the instructional
value of this kind of game under consideration here. In much the same
way that a successful metaphor provokes new ways of thinking about
familiar matters, the games that I have designed that I think of as being
metaphoric in character are intended to provoke thought, not to instruct
their participants to think in the way the designer thinks. (p. 185-186)

Constructionism, like metaphor, is intended to provoke thought rather than

invoke instruction. We also recall the value of metaphoric thinking for

creating the algorithms used in programming.

Socratic method
Given the previous Papert quote, one might conclude that all CAI

(computer-aided instruction) was simply instructionist, but this isn’t

176

necessarily the case. Consider an interesting thread simply titled ‘Socratic

methods’. The original poster suggested developing a system of iconic

programming for teachers (or curriculum developers) that would lead

students through a question and response sequence designed to elicit

agreement with some end state:

The interesting thing is that you can also think of it as a teaching tool.
You can map out trees of current and desired thinking habits, and build
a transition tree that leads logically from one way of thinking to
another.

Now it takes a great deal of human thought to come up with these trees,
but once they've been mapped out, just about anyone can follow them. …

I think it would be really cool if a computer could be programmed with a
tree like this to teach people using the Socratic method.

That is, it asks the user questions, and based on the answer either helps
the user to understand things better, or progresses along the tree to the
next step… –MW, ED-8, 1st

There was quite a bit of discussion of software tools that might be utilized to

build such a system, along with references to tools that already performed

certain aspects of the idea, and then another poster came through with this

wonderful story and speculation that I repeat in its entirety:

> I think it would be really cool if a computer could be programmed
> with a tree like this to teach people using the Socratic method.

I have been thinking about this, while playing around with a Palm
program called CyberTracker. It is used for data entry. This particular
database interface was designed for illiterate Bushmen trackers.
Equipped with Palms, the Bushmen have been producing lots of data on
rhinos in South Africa and other animals as well. More data than we
had collected on the animals in the last hundred years was gathered in
the first few weeks of this program.

177

Rather than the usual database interface of filling out a form, the
developer of this interface uses icons that follow the taxonomy used by
the trackers to group related tracks and signs. They use a lot of icons
mixed with text (teaching the bushmen a bit of word recognition as a
side effect.) Because the interface is so closely designed with the
Bushmen in mind, it takes them about 15 minutes to learn how to use
it.

Switch to North America, a group of trackers here are using a modified
version of the program, not only to collect data, but also to hone their
skills. As they enter data, they learn the taxonomic system of the
master tracker that tailored the interface; they also train their minds to
look for things in a particular sequence, and with great detail. One
learning tracker claimed it was like have a master tracker right there
looking over his shoulder, pointing out what he should look at next.

This starts to flow into the notion that learning is all about patterning
the brain. Working with this entry program with its words and icons
does just that, running the mind through learning sequences, like a
martial artist practicing their kata.

Learning patterns can be used in lots of ways in teaching. MonArt art
classes for children use pattern recognition as a way of increasing art
skills, with really dramatic effect. Once kids begin to recognize angles,
circles, dots, squares, etc. in the world around them, and working
through some basic copying exercise where they copy and mirror line
patterns, the kids’ artwork improves remarkably. The instructors are
using a taxonomy of shape components and hand movements to sharpen
the mind’s kinesthetic memory in the students.

What is the Socratic method, but a set of questions that focus the mind
on the topic at hand? It is a kind of taxonomy for mental inquiry. This
isn't entirely new, we have used decision trees and flow charts in all
kinds of diagnostics....

I am not sure exactly where to go with this yet, but I am intrigued by
the overlap here between data collection, decision trees, Socratic
(maieutic) teaching and the patterning of the mind. –SF, ED-8, 6th

In his next post he explains the unusual term, maieutic:

From the root maia, meaning midwife. It's another term for Socratic
method. The teacher helps in giving birth to the knowledge in the
student, drawing the knowledge out of them. –SF, ED-8, 8th

178

The Socratic method externalized as a CAI application might have real

utility for teaching specific techniques. The OP of this thread later posted an

educational example of the Socratic method in action at a website, Ms.

Lundquist: The Tutor.34

For another example, one topic that consistently proves troublesome for

beginning programmers is recursion,35 which is often a more succinct way of

generating a solution than looping (iteration). A simple problem that can be

solved both ways (for illustration) is the factorial function: ‘n!’ in

mathematical notation. A simple loop to calculate the factorial of a number,

might be written as:

def factorial(n):
product = 1
for i in range(n):

product = product * (i+1)
return product

If we type ‘print factorial(5)’ at the Python prompt (after typing in this

function) we get the response ‘120’. Even if one doesn’t know Python syntax,

the general outline of this procedural logic may be discerned in the ‘for’ loop

above. However, another way to define the factorial function is:

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n-1)

34 <http://www.algebratutor.org/>

35 “Recursion is a way of specifying a process by means of itself. More precisely (and to dispel
the appearance of circularity in the definition), "complicated" instances of the process are
defined in terms of "simpler" instances, and the "simplest" instances are given explicitly.”
<http://en.wikipedia.org/wiki/Recursion>

179

Here too, if we type ‘print factorial(5)’ after the function definition, we

get the response ‘120’. However, the underlying logic of this recursive code is

not at all obvious, especially to a beginner, even if one knows Python syntax.

In this kind of situation learning recursion via a Socratic-based CAI

application might be a boon for many learners. In fact, this has already been

done. Chang et al. (1999) developed such an application (which they called

‘Web-Soc’) specifically for teaching recursion. They tested three learning

modes, computer-based collaborative learning, computer-based individualized

learning, and learning without computer assistance, and found that

the three learning modes—computer-based collaborative learning,
computer-based individualized learning and learning without
assistance—produced different results on students with different levels
of prior achievement. For students with higher achievement, learning
recursion with or without the assistance of Web-Soc did not seem to
make significant difference for their improvement. But for students with
lower achievement, the students using Web-Soc in either collaborative
or individualized mode made impressive progress when compared with
those who studied without the assistance of Web-Soc. (p. 5)

 Of course, a master teacher using the same methodology would be even

better, but such master teachers, like master trackers, appear to be in short

supply; therefore, cybertracker-like, maieutic software for learning

programming could well assist in the teaching of such necessary patterns.

Encouraging planning
One question that came up a couple of times was how to encourage

students to plan their projects. A few teachers bemoaned the fact that their

students would jump into coding without an overall plan of attack. The result

was usually brittle or inelegant and required significantly more work to get

180

to a working state. There were three primary suggestions made to help

alleviate the situation:

I'm teaching in a programming course for biologists. What we are doing,
to encourage the students to think about the problem before
implementing it, is to write the algorithm in a natural language
pseudocode. We do not really introduce a pseudocode, which is even a
formal language, but we ask them to describe their solution in their
mother natural language (for us French) and discuss it before they start
the implementation. The technique not only helps them to design an
algorithm, but also helps us very often to understand what the
difficulties are for them. –KS, ED-31, 3rd

I would encourage a lightweight planning process, such as writing up a
bunch of index cards with tasks and then ordering the index cards
according to when tasks should be completed. –SH, ED-25, 2nd

What I've taken to doing in my classes (teaching OOP in Java) is to force
test-driven development with JUnit. Students don't buy it at first, so
they'll write all the code, then write the test cases. Once I show them
(projecting my laptop screen) how much easier it is, and how much
better the design ends up being, the light starts to go on. Also, with test-
driven development, they're forced to “evolve” the code (and sometimes
the interface) as more test cases are added. Thinking of test cases will
cause at least some forethought about the algorithm. –TW, ED-31, 2nd

There was no feedback on the efficacy of any of these methods by the OP, but

there was one other technique brought up in these threads that bears

mentioning: embedding the programming requirements in stories.

I had expected more real “stories”—i.e. “So, a user walks into a
brokerage house and asks...” with the eye on the stories being one to
engage the imagination and from the story to distill the requirements.

That's kind of what I have done for middle school students with respect
to a Mars Voyage Simulation written in Perl though it's not quite the
same thing because I was writing the program to fit some requirements
of a Mars Space Camp that the students were taking. Still, I tried (for
middle school students) to weave a “simulation story” around what I
was doing so there would be a natural visualizable way that the

181

programming aspects would fall out and be meaningful to the students
rather than seeming to have just been pulled out of thin air.

Your students are several years older than mine so it may be that they
don't need (as I felt) the more concrete story telling to get their heads
into the problem. –DR, ED-25, 6th

This could also tie in nicely with a Socratic approach where ‘the story’ is a

Socratic question and answer sequence that also specifies the problem and

points to a programming solution.

Homework and grading
A typical concern of teachers is assignments and evaluation. There was

some discussion about this on the list, from posters representing a spectrum

of levels, from middle school to graduate courses, making these issues

difficult to generalize. Still some suggestions and experiences were offered:

Our course is being taught at the graduate level, so somewhat different
considerations apply. However, we do assign homework (on a weekly
basis). The homework is submitted to the instructors as text or .py files
and is required to be extensively commented. The function and strategy
of each section of code must be described in the student’s own words.
Thus the homework assignments are sort of a combination of
programming projects and discussion questions. –JH, ED-21, 2nd

On the subject of students swapping code—I'd see that as inevitable and
structure the homework around that assumption. Sharing code is a good
thing, encourage it.

One other thing to encourage is not to create from scratch but take a
working program and extend it.
- Make it menu driven
- Add an extra function to the menu
- Improve error handling etc... –AG, ED-21, 4th

I cut the number of computers in my lab in half this year, so that two
students share each computer rather than having each student have
their own.

182

I did this to make collaboration a necessity. I plan to use peer-
programming methods (extreme programming) for projects throughout
the year. In the beginning I will be the client and the students will be
the programmers. Later in the year I would like to try setting up
situations where the students can play both client and programmer
roles for each other. –JE, ED-21, 5th

The training outfit I teach for (and developed the Python course for) has
used this model [peer-programming] successfully for many years. Our
environment is somewhat different - four or five intensive days, and
you're hitting up against the limits of what people can absorb. Learning
with a partner, if managed a bit (making sure both students type, and
that they really /do/ collaborate: we keep instructing them to READ the
problem out loud and talk about it) takes some of the focus off of syntax
and typing mechanics and puts it onto understanding the concepts. And
it's just plain more fun. In effect, the partners teach each other, as they
“get” different things at different times. There are a number of studies
that back this up; my comments are based on my own observations,
however. –MW, ED-21, 7th

We see here a shift away from an instructionist model where individual

students are asked to memorize and recite material by following instructions

and towards a constructionist model where teams of students work on

projects that exercise their understanding of developing software

applications. Evaluation is still tricky, though, and the OP of this thread

lamented that none of the responses addressed that issue directly. Implicit in

one suggestion, though, is a kind of evaluative method: commenting.

Programmers are expected to heavily comment their code so that future

programmers will have some idea of what each code section does. These

comments can also be used by teachers to evaluate the student/programmer’s

understanding of what is happening with the code. Furthermore, since

programming projects are very often done in teams using lots of borrowed

code, comments can go a long way towards facilitating team interaction and

183

productivity. Classroom dynamics ought to reflect that reality by encouraging

well-commented code.

Conclusion of education category
We have seen the difficulties educators face trying to incorporate

programming into their school’s curriculum. Those who try to adopt it into

their subject-specific classes face resistance from other department members

who may be reluctant to change the knowledge being taught in their classes,

and the way it is taught. A more successful approach is to establish a non-AP

course in programming, or to sponsor an after-school computer club.

We have also seen that those teachers who do employ programming in

their classes have a few formal textbooks tailored to the teaching of Python in

a classroom setting, but that many resources exist in cyberspace that can be

utilized in the creation of a customized syllabus. These posters also

emphasized that there are two modes of interacting with Python, shell mode

and script mode, where students obtain quick results using the interactive

interpreter, and can consolidate successful results in scripts saved on their

filesystem.

And, in the final section on teaching methodologies, we saw that the

posters advocated retaining student interest in programming by involving

them with projects that aligned either with the students’ own personal goals,

or with their other subject matter goals. We also saw that the projects should

begin small, and gradually get larger as skills and syntax familiarity

184

increase. While introducing programming assignments, teachers need to

manage two aspects of programming style: procedural v. object-oriented, and

top-down v. bottom-up. We also saw the importance placed on encouraging

good planning by the budding programmers, and also on peer collaboration

while working on the projects/assignments in a constructionist rather than

instructionist environment.

4.3 Python and Computer Science
This set of threads was defined by the following keyword phrases:

• Case sensitivity
• Indexing
• Programming
• Accessibility
• Computer science
• Measuring Python
• Algorithms
• Notation
• AI (artificial intelligence)
• Sequences by reference
• Novice obstacles
• Interactive interpreter
• Lines of code

The set of threads included under this category contained one useful theme

that I’d like to explicate here. Although there were several other themes of

considerable interest discussed within these threads, they were excluded

from this dissertation due to reasons explained in the previous chapter.

Insiders and outsiders
The primary theme to highlight from this category is that any language,

human or computer, creates insiders and outsiders. The advantage of Python

185

as a first computer language is that the linguistic barrier to becoming an

insider is very low, relative to other computer languages. It is low largely due

to its use of simple, ordinary words. Here’s how one poster put it:

Python: I love for its readability on two levels:
1. - consistent syntax and mostly very clear logical flow top to bottom.
2. - friendly visual syntax mainly derived from the obligatory but
liberating white-space indentation

Scrolling down and scanning large chunks of python code, I detect a
well-tempered rhythm. The blocks, indentations, naming and repetition
reveal a similar construct pattern across myriad examples. This is a
very ‘un-scientific’ comment I realize, but one perhaps worthwhile
investigating..

I love Python's writeability for two main reasons also:
a. - executable pseudo-code
to me Python is very sculptural. You start by naming and imagining
things and relationships and then proceed to sketch them in. With time
and skill you just keep going, implementing details and functionality.
Play and exploration are encouraged, as is throwing things away when
one has a better insight. I think this stems from the fact that because
everything in Python is an object, one must name it, and doing so makes
it exist. You might argue that is true for all languages, and I would
agree, but Python seems very direct in the workflow from imagine, to
model to further implementation and naming and objects are present in
the same manner every step of the way.

b. - dictionaries and named arguments
yes thank you Guido! I argue named arguments are a major reason why
Python is readable and makes a great learning language. You take your
semantic token map with you and share it liberally with all who come
after. Dictionaries are the engine behind this. What you call something
or assign a value/meaning to is more important than where it comes in
the sequence, and we people should not be persecuted by having to
interpret lists of unidentified symbols.

Once you know how to 'read' a little Python, you know how to read most
Python. Ditto writing. There is evident a clear design pattern here,
which apart from a few characteristic idiosyncrasies, works very well.

This I think makes it especially suitable for teaching programming. And
I agree with KU, it is a very cosmopolitan language. I would stress also

186

that any language for people to learn is only as good as its community.
Even if a small tribe, is it a living growing language? I believe the mood
and quality of its culture is especially crucial for learning computer
programming. –JC, PCS-6, 4th

However, in another thread, this ‘readability’ was compared with two other

attributes, succinctness and power:

In “Patterns of Software,” Richard Gabriel makes an important corollary
point. He refers to Compression rather than Succinctness, and compares
it to the way language is used in poetry to generate multiple meanings.
But he warns that compression without habitability (another important
feature he discusses) leads to write-only languages (I'm paraphrasing
liberally). In other words, taking succinctness as the only measure leads
to Perl %-)

Graham's article is a response to something Paul Prescod wrote,
namely, “Python's goal is regularity and readability, not succinctness,”
which Graham translates as “Python's goal is regularity and readability,
not power.” My take on it would be “Python's goals emphasize regularity
and readability (habitability) over succinctness (compression).” Python
is extremely succinct compared to Java, C, or C++, but verbose
compared to Perl or Lisp. On the other hand, I've found Python to be
easier to read and comprehend than any of those languages. –DE, PCS-
15, 3rd

In terms of trade-offs, Python sacrifices succinctness (or power) for

‘habitability’ (familiarity and comfort). That is, Python does not require

excessive sophistication or abstraction to begin using it and thus is accessible

to the average programmer. But it doesn’t trade away too much succinctness;

just enough to be readable, familiar and comfortable, and no more.

Nevertheless, despite its habitability, there is still a barrier to entry, which

when crossed, creates a sense of community:

Finally, as AS points out, we over time develop a Community that
speaks a similar shop talk, so in gaining entrée to a Philosophy (or
software package, or language), it's not just a set of skills you're
mastering, but a set of contacts, relationships, peers, cronies, colleagues

187

(living and dead). … So if you want to talk shop with the computational
geometers, for example, it’s probably a good idea to start learning the
lingo, which includes translate, scale, vector, matrix, lattice, symmetry,
rotation, symmetry group, polyhedron, vertex, edge, face, Euler, Gauss,
Coxeter, Fuller... –KU, PCS-3, 5th

Herein lies the problem (and opportunity) of integrating computing with the

traditional academic subjects. Learning the ‘lingo’ means belonging to the

Python club, which is necessarily different from the Mathematics club, or the

Science club, or the Humanities club, etc. And there is often some antipathy

between members of certain clubs towards members of other clubs. But as

computing becomes more and more integrated with each of these other

disciplines, some computing lingua franca is sure to arise that allows

communication between the clubs, somewhat the way Mathematics does

currently with respect to the various branches of Science. But computing has

the possibility of extending its reach to a far greater number of disciplines

than Mathematics has, thus subsuming Mathematics within its embrace.

Conclusion of Python and computer science category
The main point here is that learning Python, in order to ‘program to

learn,’ by necessity introduces one to a computing community that shares a

common language, but that community should not be confused with the one

known as Computer Science despite the fact that both primarily use

computers and share some of the same terms and concepts. That is,

Computer Science constitutes a field of study distinct from the goals of

Computer Programming for Everybody:

188

In its most general sense, computer science (CS) is the study of
computation, both in hardware and in software. In practice, CS includes
a variety of topics relating to computers, which range from the abstract
analysis of algorithms to more concrete subjects like programming
languages, software, and computer hardware. As a scientific discipline,
it is a very different activity from computer programming and computer
engineering, although the three are often confused.36

There are certainly areas of overlap between CS and CP4E, especially

with respect to vocabulary and concepts, and certainly considerable

dependency on the fruits of CS by CP4E, but the two are not synonymous and

should be kept separate as they have different goals and different audiences.

The primary skill being learned, computation, across all the disciplines

involves designing artifacts in which the machine absorbs the costs of

repetition. As the posters of this newsgroup have claimed, the beauty of

Python as a vehicle for this design work is that its simple data structures and

flow control syntax allows the programmer to readily express his or her

concepts across all these disciplines. One’s focus is not on Computer Science;

one’s focus is on expressing ideas, designs and artifacts in Mathematics or

Physics or Art or Social Studies or English using a computing language that

gets in one’s way as little as possible.

4.4 Math-related
This category of thread was grouped by the following keyword phrases:

• Division
• Exponentiation
• Fractions
• Prime

36 http://en2.wikipedia.org/wiki/Computer_science

189

• Precalculus
• Math, mathematics
• Algebra
• Calculating
• Rationals

There was an interesting struggle that occurred in these Math-related

threads. That struggle is perhaps best characterized as one of hegemony,

both of computing over math and math over computing. We will see this

struggle played out over a few illustrative examples. In this section, we will

discuss the Sieve of Eratosthenes, polynomials, division, and the difference

between assignment and equality.

Sieve of Eratosthenes
The first case where the struggle occurs concerns an ancient algorithm

for finding prime numbers, known as the Sieve of Eratosthenes. The

algorithm can be expressed in English as follows:

1. Write down the numbers 1, 2, 3, ..., n. We will eliminate
composites by marking them. Initially all numbers are
unmarked.

2. Mark the number 1 as special (it is neither prime nor
composite).

3. Set k=1. Until k exceeds or equals the square root of n do
this:

a. Find the first number in the list greater than k that
has not been identified as composite. (The very first
number so found is 2.) Call it m. Mark the numbers

2m, 3m, 4m, ...

as composite. (Thus in the first run we mark all even
numbers greater than 2. In the second run we mark all
multiples of 3 greater than 3.)

b. m is a prime number. Put it on your list.

190

c. Set k=m and repeat.

4. Put the remaining unmarked numbers in the sequence on your
list of prime numbers. (Alfeld, 2000)

One of the posters submitted a short program for finding primes using

this algorithm. The initial version of it was straightforward, and followed the

directions specified above faithfully. Subsequent posters offered suggestions

for improving the code, explaining the rationale for each improvement or

optimization. In the end, 17 lines of code were reduced to 8. Both versions are

shown below:

def eratosthenes(n):
 # a prime number sieve, thanks to Eratosthenes
 # returns list of primes <= n
 cutoff = n ** 0.5 # 2nd root of n is cutoff
 sieve = [0, 0]+[1]*(n-1) # [0 0 1 1 1...] with 1st 1 in position 2
 results = [] # empty list, will contain primes when done
 prime = 2 # initial prime
 while prime <= cutoff: # done when prime > 2nd root of n
 j = 2*prime # jump to 2*prime (first multiple)
 # turn sieve elements corresponding
 # to multiples of prime from 1 to 0, up to n.
 while j <= n:
 sieve[j]=0
 j = j + prime
 # scan for a 1 in sieve beyond highest prime so far
 prime = prime + sieve[prime+1:].index(1) + 1
 # now translate remaining 1s into actual integers
 i=0
 for entry in sieve: # step through all entries...
 if entry: # if entry is 1 (i.e. true)
 results.append(i) # add prime to list
 i=i+1
 return results # return list of primes

def eratosthenes(n):
 """A prime number sieve, returns list of primes <= n
 Thanks to Eratosthenes for the algorithm, with
 streamlining by KY, JP and TP"""
 sieve = [0, 0] + [1] * n # [0 0 1 1 1...]
 prime = 2 # initial prime
 while prime**2 <= n:
 for i in range(prime**2, n+1, prime):
 sieve[i] = 0 # step through sieve by prime
 prime = prime+1 + sieve[prime+1:].index(1) # get next prime
 # filter grabs corresponding range members
 # only when sieve = 1
 return filter(lambda i, sieve=sieve: sieve[i], range(n+1))

191

(both methods submitted by KU, MTH-4, 1st & 13th)

What we do with either of these two code samples is strongly dependent upon

the context in which they are being generated or used. If we are in a

Mathematics class and we are studying the Sieve of Eratosthenes, we might

initially be learning the algorithm with paper and pencil, or with other

manipulatives representing integers from, say, 1 to 100 on a 10 by 10 grid.

Once that appears to be understood, the teacher may want to reinforce the

understanding of the algorithm by asking the students to write a program

that can generate prime numbers far beyond what they can do with paper

and pencil or manipulatives. And they are likely to come up with something

closer to the first code listed above than the second one. Either way, now the

students have generated a method that could go into a module for use later

when a set of prime numbers is required for some other task. And, they likely

have a deeper understanding of how Eratosthenes’ Sieve actually works.

Alternatively, they could explore other ways of generating a list of primes

that is more efficient than this Sieve.

However, if the context is a Programming class, coming up with the first

code as a way of generating primes is only the first step. The code performs

the required steps, but we are interested in how to make the code ‘sing’; that

is, how to remove redundancies, inefficiencies, and bloat, in short, how to

make it elegant. Having first established the connection between the English

expression of the algorithm and the initial Python expression, we can now

introduce new terms of the language and see how they work because they

192

generate the same results in a more concise form. For example, the last line

of the second program above uses ‘filter’ and ‘lambda’ to generate the final

list of primes. Having built an understanding of the algorithm with the

earlier, more naïve code, students are in position to understand the use of

these two new terms since they accomplish the same result as the earlier

code. In this context, the focus is not on the mathematics of the algorithm

(although that is certainly foundational in this case) but on the programmatic

constructs that accomplish the goal most elegantly. And, as in the

Mathematics class, the topic could well shift to other algorithms that

accomplish the same result of a list of prime numbers.

So we see the tension that ensues as programming is introduced into the

Mathematics classroom. The focus could begin to shift away from purely

mathematical considerations and into rhetorical concerns (how well an

algorithm is expressed), taking time away from other mathematical topics.

Let’s consider a few other examples of how this tension manifested itself.

Polynomials
One poster, KU, remarked at one point near the beginning of a thread,

“A link between programming and algebra is in this concept of variables.” His

goal was to create a module such that students could enter the coefficients of

a polynomial, and a range over which the function could be evaluated. For

example, one might enter:

193

>>> f = poly(2,3,1)
>>> f(4)
45

where the first line assigns the expression “2x2 + 3x + 1” to the variable ‘f’.

Then ‘f’ is given the value ‘4’ and the equation resolves to ‘45’. If one gave the

equation ‘f’ a series of values, a list of results would be returned, which could

then, presumably, be graphed. As the thread progressed, the function turned

into a class that not only returned a numerical result if given a numeric

argument, but could also return a symbolic expression, if given another

function as an argument. For example, the ‘Poly’ class could be used as

follows:

>>> from polynomial import *
>>> f = Poly([1,-3,2])
>>> g = Poly([1,3,0])
>>> f
x**2 - 3*x + 2
>>> g
x**2 + 3*x
>>> f(g) # <--- symbolic composition
x**4 + 6*x**3 + 6*x**2 - 9*x + 2
>>> g(f) # <--- symbolic composition
x**4 - 6*x**3 + 16*x**2 - 21*x + 10
>>> f(g(10)) # <--- or you can do numeric evaluation
16512
>>> g(f(10))
5400 # –KU, MTH-8, 15th

On one level, the code for the ‘polynomial’ module37 can be used as a

calculator, like it is in this example, much as a graphing calculator can be

used, where the module ‘polynomial’ is as much a black box as a calculator.

However, on a deeper level, the students might be asked to create such a

37 See http://www.4dsolutions.net/ocn/

194

module themselves, rendering the box’s opacity more translucent. Of course,

the code for working with polynomials is more involved than the code for the

Sieve of Eratosthenes. However, writing it represents an opportunity to

really get to know how polynomials work (especially if the code graphed the

results) as well as getting to know how Python works.

Both of these examples highlight the tradeoffs involved with introducing

programming into the Mathematics classroom. Using prewritten code

students can quickly explore a range of polynomials and discover the

resultant curves when more powers are added or coefficients are altered in

controlled patterns. They can do the same with graphing calculators. But

either way, they are still dependent on a black box. However, by writing their

own module, they not only gain greater mastery over the programming

language used, they also come to understand the subject matter more deeply.

But of course, such a journey takes time and the Mathematics instructor may

be loathe to take it, perhaps perceiving it as an unnecessary detour (or dead

end). On the other hand, the Programming instructor may well see this

mathematic subject matter as fertile material for instruction (construction),

seeing not a detour, but rather an opportunity for synergy with the Math

classes the students are already taking.

Division
The struggle between Math and Programming exhibited itself

prominently in another sense that manifested itself in a couple of different

195

guises. These issues came up for beginners because we all (who have gone

through school without any programming experience) have certain

expectations based on the Mathematics training we received. These

expectations clashed with Python most loudly in the area of division. If we

divide, say, ‘6’ by ‘2’, we get ‘3’, and this causes no problems for us or for the

computer because ‘3’ is in the same set of numbers (integers) as ‘6’ and ‘2’.

The same harmony prevails with ‘6 + 2’, ‘6 – 2’ and ‘6 * 2’ because all of the

results belong to the set of integers. However, if we divide ‘3’ by ‘2’ in Math

class, we get ‘1.5’ which causes us no surprise (anymore; maybe it did when

we first encountered it). But Python behaves differently:

>>> 3/2
1

What Python is doing is returning the integer part of the answer (known as

the ‘floor’). This was done with the principle of least surprise in mind:

operations involving integers should return integers. This always happens for

addition, subtraction and multiplication, so it causes no surprise, but not

always for division, so returning an integer when we expect a real number

(because of what we learned in Mathematics) does cause a surprise. Python

discards the decimal portion of the answer in order to return an integer38. If

you want the decimal portion, then the division has to involve a decimal to

begin with:

38 Python includes a function which returns both the integer and remainder of a division:
>>> divmod(7,2)
(3, 1)

196

>>> 3./2
1.5

Notice the decimal point in the numerator; this tells Python that it isn’t an

integer (it’s a real) and then the result can be a real (known as a floating

point number in programming).

However, this original decision in the Python language was flawed

because it violated the principle of least surprise in a different way:

> I personally don't think the primary reason for changing the behavior
> of / was that it confused newbies. –KU

Correct, it has nothing to do with that (even though newbie confusion
led me to first see the problem). It has to do with substitutability of
equal values with different types. When a==A and b==B, then a+b
should be == A+B, at least within reasonable precision. –GvR, MTH-13,
4th

So a quick session with the interactive interpreter shows us the problem:

>>> a = 9/10 #assignment with integer values
>>> a #what is a?
0 #returns the floor
>>> b = 7/10 #assignment with an integer value
>>> b #what is b?
0 #returns the floor
>>> a + b #what is the sum?
0
>>> A = 9./10 #assignment with a floating point value
>>> A #what is A?
0.90000000000000002
>>> B = 7./10 #assignment with a floating point value
>>> B #what is B?
0.69999999999999996
>>> A + B #what is the sum?
1.6000000000000001
>>> a + b == A + B #are the sums the same?
False

This illustrates the real problem with division as it was originally

implemented in Python.

197

During the time of the messages in this study, the Python language was

altered to accommodate a different behavior. But it had to be altered in such

a way that it would be backwardly compatible with existing code that might

rely on integer division returning integers instead of reals. So it was declared

that a future version of Python will in fact return a real number when two

integers are divided, and a new operator ‘//’ was defined to perform the

previous behavior (returning an integer, the floor). But how does that help

the current Math teacher who wants division to return reals now? By

importing a special module at the beginning of a script or interactive session,

the new behavior may be invoked:

>>> from __future__ import division
>>> 3/2
1.5
>>> 3//2
1

And in a future version of Python, this will be the default behavior, so the

import statement will be unnecessary.

Division was contentious for another reason:

>>> from __future__ import division
>>> 7/3
2.3333333333333335

Notice the ‘5’ at the end. Doing this calculation by hand would generate a

series of 3’s for as long as we cared to calculate; no 5’s should ever appear in

the quotient. The problem arises because when we do it by hand, we are

doing the calculation in base 10. The computer, however, is doing its

calculations in base 2, and when it converts its answer to a decimal

198

representation, there are ‘rounding errors’. This is often a source of

consternation and confusion for beginners, but in this case, it is a property of

computers themselves and there is no ‘from __future__ import exact’ to be

had:

Although there are infinitely many real numbers, a computer can
represent only a finite number of them. Computers represent real
numbers as binary floating-point numbers. Binary floating-point
numbers can represent real numbers exactly in relatively few cases; in
all other cases the representation is approximate. For example, 1/2 (0.5
in decimal) can be represented exactly in binary as 0.1. Other real
numbers that can be represented exactly in decimal have repeating
digits in binary and hence cannot be represented exactly. For example,
1/10, or decimal 0.1 exactly, is 0.000110011… in binary. Errors of this
kind are unavoidable in any computer approximation of real numbers.
Because of these errors, sums of fractions are often slightly incorrect.
For example, 4/3 – 5/6 is not exactly equal to 1/2 on any computer, even
on computers that use IEEE standard arithmetic. (Apple Computer,
1994)

>>> from __future__ import division
>>> (4/3)-(5/6)
0.49999999999999989

(See also the Python Tutorial for a thorough explanation.39) So, division in

Python creates issues with respect to the mathematic expectations we form in

school. But these are small issues that programmers easily learn to deal with.

Assignment and equality
The last main math-related issue that posters talked about concerned

the equals (=) sign. Python, as well as almost all other programming

languages, distinguishes between two different operations, assignment and

39 <http://www.python.org/doc/current/tut/node14.html>

199

equality, through notation. Assignment is the process of assigning an

expression to a variable, as in:

Circumference = 2 * 3.14 * radius

Here, the variable ‘Circumference’ is assigned the product of 2 times 3.14

times whatever the ‘radius’ is, and this assigning is performed via the equals

sign. However, sometimes we need to test whether an expression on the left

hand side is equal to an expression on the right hand side. Normally, we

would expect to use the equals sign, but that is already being used for

assigning, so Python (and many other programming languages) use a double

equals (==) sign. We can see the difference in action:

>>> x=3*4 #assignment
>>> x #what is x?
12
>>> y=2*5 #assignment
>>> y #what is y?
10
>>> x==y #is x equal to y?
False
>>> x==y+2 #now are they equal?
True
>>> x=y #now x is assigned whatever has been assigned to y
>>> x #what is x?
10
>>> y #what is y?
10
>>> x==y #now are they the same?
True

This may not be too confusing while reading the above snippet, but for

beginners who are used to the equals sign meaning equality, the double

equals sign notation takes some getting used to. Two of the posters described

the situation like this:

200

Note that math books sometimes use the equal sign for assignment, and
sometimes to assert equivalence. We're supposed to know the difference
from context. Parsers don't like ‘context’ so much—better to be explicit.
–KU, PCS-8, 4th

There is no logic to it.

When we started coding programming languages, “=” was in the
character set and it was used for assignment. It started with Fortran
and earlier efforts at programming languages. Since Fortran didn't have
relational operators in the first version, there was no problem. In later
versions, .EQ. was used for the relational operator, allowing Fortran to
remain expressible in the original 48-character set.

When there were relational operators and they needed to be different,
the conventions of “:=” and “=” (Algol family) and “=” and “==” (the
Ratfor family) arose. The use of := (and =:) to indicate a composed arrow
just didn't set well with some people. I've always liked it myself. There
may be some odd connection with “:” not being available in all character
sets at the time these practices were being worked out.

In some languages where there is no possible confusion of assignment
and the equality relational operator, “=” is used both ways.

It is arbitrary. Simply arbitrary. Both operations are needed, and their
symbols usually need to be distinct. That's the whole deal. Basically,
“==” is now the prevailing custom for the equality relational operator in
programming languages.

Since mathematics doesn't have an assignment operator, and
mathematicians are willing to use other symbols (e.g., arrows) when
needed, we are stuck with this odd cross-over dissonance. –DH, PCS-8,
5th

Conclusion of math-related category
We have seen two sources of confusion for the beginning programmer

specifically derived from mathematic notational expectations: ‘/’ and ‘=’.

Teachers need to be aware of these and make sure that students understand

the difference between the mathematical meaning and the programmatic

meaning of these symbols. Furthermore, we have seen how using

201

programming in a Mathematics class introduces new decisions for the teacher

as to where to direct the class’ attention. What algorithms should be studied?

How concise should programs that implement those algorithms be? What

traditional topics need to be sacrificed to make room for programming

concepts? Is it more important to learn how to do, for example, polynomials

by hand on paper, or to program a polynomial function that might take

considerably more class time to debug? These hegemonic questions illustrate

some of the issues that the posters on the list grappled with when considering

the intersection of Mathematics and Programming.

4.5 Science-related
These threads were characterized by the following keyword phrases:

• Robotics
• Scientific
• Modeling
• Periodic table
• Physics

There were many fewer threads on using Python with science subjects

than math subjects. There also didn’t seem to be any reports of a struggle

between programming and science, as far as overlapping notation, or

nomenclature or concepts were concerned, as we saw with Mathematics.

Among the few ideas discussed were creating and using a machine-readable

version of the Periodic Table of Elements, creating a Tree of Life, and

designing an Educational Robotics platform (ala Lego® MindStorms™).40

40 <http://mindstorms.lego.com>

202

However, I’d like to discuss one of the most valuable reasons for including

computer programming in the sciences, even though this reason wasn’t

specifically mentioned directly, but only alluded to indirectly by one of the

posters.

Dynamic representations
We can think of a computer program as a representation. In the domain

of science, this might be a representation of a cell or an ecosystem, a molecule

or a biochemical pathway, a cloud or a climate, a species or a kingdom, but

whatever the object being represented, it is going to be a different

representation than one generated by an essay, or a cardboard poster, or a

video. And having multiple representations of the same object is highly

valuable with respect to expertise:

Scientists are very skilled at flexibly and fluidly moving across multiple
representations based on underlying principles. They use the features of
various representations, individually and together, to think about the
goals and strategies of their investigations and to negotiate a shared
understanding of underlying entities and processes. (Kozma, 2003, p.
224)

The context for this quote was multiple representations (primarily

visualizations) generated by science-specific computer applications, but the

point still holds for a representation that is created by the students

themselves through programming. Such results may not be quite as

sophisticated as the ones obtained by professional visualization software, but

being able to express the principles of the system being modeled in software

203

certainly contributes to a student’s overall understanding of the subject.

DiSessa (2000) echoes this importance:

Representations and externalizations have always been part of scientific
thinking. We need to pay more attention to the fact that computation
has now brought the possibility of a hugely expanded repertoire of
media constructions that may express scientific ideas or become part of
scientific thinking. The proof of the four-color theorem—that any map
can be colored by at most four colors (with no two bordering countries
having the same color)—required a computer program. Science used to
be thought of as a scientist making a discovery (possibly in the presence
of some technology) and explaining his or her results to others. Science
should be thought of now as a scientist coming to think differently in the
presence of his or her representational technology and putting others in
contact with that technology so that they may also think differently with
it. (p. 116-117)

And finally, Bruce Sherin (1996) examined in great detail the question

of learning Physics using two different symbol systems, one by using

algebraic notation and the other by using a programming language:

Central to this endeavor is the notion that programming languages can
be elevated to the status of bona fide representational systems for
physics. ... A conclusion of this work is that algebra-physics can be
characterized as a physics of balance and equilibrium, and
programming-physics a physics of processes and causation. More
generally, this work provides a theoretical and empirical basis for
understanding how the use of particular symbol systems affects
students’ conceptualization. (p. 3)

Since math and physics are so closely related, it may well be that this same

conclusion could be reached for Mathematics, that is, traditional-notation-

mathematics characterized as a mathematics of balance and equilibrium, and

programming-mathematics as a mathematics of processes and causation.

However, reaching this conclusion must wait for a different dissertation!

204

Conclusion of science-related category
It is likely that the posters of this group addressed the issue of

representations in science subjects, but such issues may have been raised in

the context of threads dealing with graphics, which were excluded from the

studied data. Or, this issue might have been raised in connection with a

discussion of Wolfram’s book, A new kind of science, which was released

during the time covered by the data, but was excluded during the winnowing

process. Whatever the cause, I feel that most posters would agree that

programming computer representations of scientific phenomenon would

constitute an appropriate example of learning programming in order to

facilitate programming to learn.

4.6 Programming for Fun
This category consisted of the following keyword phrases:

• Kids
• Fun
• Playing cards
• Science expo
• Artists

In this section, we look at two main topics. The first one centers on

using programming with multimedia artifacts. In the second one we explore

the group’s thoughts on ‘why program?’

Despite the apparent levity in the title of this category, there was a

surprising streak of seriousness that went to the heart of this dissertation’s

topic. There certainly was some fun in evidence too, most notably the thread

called ‘Cards ‘n stuff’ which demonstrated how elements of card playing, such

205

as cards, suits, ranks, decks, shuffling, dealing and even a game of blackjack,

could all be modeled (without a graphical user interface) using simple object

oriented programming. There was also fun in some of the suggested small

projects that students might undertake to gain confidence in their

programming skills. One example was a simple guessing game where the

computer randomly chooses a number between, say, 1 and 99 and the user

tries to guess the number using only the feedback ‘too high’ or ‘too low’ from

the program. Another suggestion was to take a phrase (‘hippopotamus

anthropologist’ for example) and see how many words could be generated,

either by contiguous letters in the phrase, or by jumping from letter to letter

in the left-to-right direction.

Multimedia
One of the more enthusiastic threads began as a request for ways to

teach and use Python programming in the service of creating multimedia

artifacts:

I teach multimedia and web design at an art school as part of a
curriculum that includes neon, kinetics, holography, microcontrollers,
digital imaging and video, and pretty much anything else that involves
technology. A lot of the problems our students run across require
programming of one kind or another, and this trend seems to be
increasing. My courses concentrate on programming a good deal, using
javascript, flash/actionscript, or director/lingo for websites, cd-roms,
gallery installations, etc. However, a good part of every semester is
taken up with basic programming concepts before we can get to the
“good stuff”. I'd like to introduce a solid programming class at the
foundation level, and python seems like an interesting possibility. I
haven't learned it yet, but have been working in c++, java, perl, etc. for a
while so hopefully I can get a handle on it by September <g>. The
problem with the approach we've been using (javascript, lingo, or

206

actionscript as an introduction) is that each of these languages has a lot
of features and quirks which are very unique, which gets in the way of
teaching general programming concepts. I'd like to use something that
will let me teach core concepts quickly without getting stuck on too
many language-specific details. At the same time, whatever I use will
have to be something that students can use to produce interesting
results quickly as well - since this is an art school, we're really
interested in artistic applications of programming rather than, say,
calculating compound interest or the traveling salesman problem. So,
my question is - has anyone used python for teaching art students? Does
this sound like a reasonable thing to do? –BC, PF-6, 1st

This generated numerous responses, including many suggestions of

modules and packages that generate aural and visual output and can be run

by Python. This quickly led to the realization that there was a collaborative

book /CD-ROM opportunity here, variously titled “Programming for the Fun

of It” and “Programming for Artists” which would detail the interactions

needed to work with these various packages. An issue arose, however,

centering on how much math would be necessary in such a project. A couple

of the posters, having had considerable experience generating visual models

of geometric objects, claimed that programming in multimedia art required a

fairly sophisticated degree of mathematical understanding:

Can one use the Python interface to Blender [a 3D graphics creation
suite] in any significant way without a decent grasp of certain
mathematical concepts - trig is basic to defining paths for animation, for
example. Or defining shapes. Or, I would argue, in talking to Blender in
any significant way at all.

Given that one’s interests are artistic at their core, why bother to learn
programming in pursuit of those interests if not to have more control, to
interface with available tools at a lower level, to remove barriers and
limits set by others.

At a very practical level, math proficiency becomes key and fundamental
to removing such barriers. Can one do good ray tracing - true artwork -

207

without being armed with the right mathematical concepts? One might
argue yes, but a good artist it seems to me won't settle for work-arounds
and canned tools to achieve effects he might want to achieve. He'll go
straight at it, acquiring the full range of skills necessary.

In about everything I've seen with computer generated graphics, if one
wants to work with freedom, at a low level of interface to one's tools -
that means a good degree of math proficiency in addition to the ability
to write code, scripts, whatever.

I for one both learned math to draw the pictures and drew pictures to
learn the math, never really knowing or particularly caring which goal
was primary. –AS, PF-6, 11th

However, other posters were much less enthusiastic about having to learn

math to do art:

I would like to extract the patterns within multimedia just as one might
do for 'Math'. I am far from convinced that Math is central. Essential
yes, but I follow the line that it is pattern recognition and structural
[=clear] thinking which are the heart of CP4E. …

I guess what I am trying to get at is that the basic constructs and habits
of programming “for everyone” may not need to be particularly related
to obviously Mathematical stuff.

Such as:

• opening and closing files,
• navigating dicts, lists and data structures
• parsing and formatting results
• formats and protocols
• passing parameters for API class methods
• reading + writing code
• piping, processing and linking
• looping and conditionals
• interfaces: what are they, how do they work?
etc

Literacy in these and more I consider almost completely un-
mathematical, depending on your context. (If you want to get very
mathematical with them you can.) ...

Most 3D modeling and animation and graphics software offer
sophisticated user interfaces, because most of the time those interfaces

208

are much more efficient, 'readable' and better than miles of numbers in
brackets and quotes. –JC, PF-6, 10th

As I read these and the other messages in the thread, it seemed that the real

struggle was not about math and art, but about what really constituted

programming. At what point does interacting with a computer application

switch from using (reading-like) to programming (writing-like)? In the case of

these multimedia applications, the separation is not so clear. The issue here

is the same as was discussed in the second chapter: the distinction between

‘procedural’ and ‘declarative’ languages. Some posters were arguing that to be

true to the spirit of ‘programming for everybody’, the product being discussed

should fully utilize a Turing-complete, procedural language, like Python,

rather than simply describing how to use various products’ declarative APIs

(application programming interfaces). Others were arguing that using such

APIs was in fact, a form of programming, and had the additional benefit of

being approachable to a larger number of people who might otherwise be put

off by the low-level math needed to construct multimedia artifacts only using

a procedural language without benefit of the slick graphical user interfaces

the declarative language packages provided.

As it turned out, there was no agreement reached on the matter, but the

lesson to be learned is that if one joins a collaborative effort such as the one

described in this thread, it should be made clear to each of the collaborators

which programming approach (procedural or declarative) is being followed.

209

 A related issue came into focus with another thread notable for its

depth of thoughtfulness.

The ‘why’ of programming
The thread began with a simple question:

So, I've been working for awhile on the how of teaching programming to
non-geeks. What I think is a more important question, is Why? Why
should someone be interested in learning to program? I'm not talking
about convincing them to give up their day job, or learn higher math,
just to have an interest in occasional programming. Here's my first cut
at some possible motivations, but I'm very interested in finding more:

• Build problem-solving skills
• Learn math
• Create toys
• Fix the software you use
• Understand computers and the digital world better
• Extend the software you use
• Create tools you need. –DE, PF-2, 1st

An unexpected post that fits remarkably well with the multimedia thread

discussed above soon followed:

G.H. Hardy's book, “A Mathematician's Apology”, covers some of the
issues of teaching abstract concepts. Why do people do crossword
problems? Crossword problems surely don't have any direct application,
yet people derive satisfaction from solving a puzzle. Hardy says that
people do mathematics, not because it's practical, but because it's
beautiful --- that's his primary justification for mathematics.

Likewise, I think people program, not only because it's useful, but
because it's intellectually stimulating; there's something wonderfully
neat about seeing these processes run under our fingertips. All these
other perks: improving one's employability, gaining problem-solving
skills, are all secondary to the idea that programming is fun. –DY, PF-2,
3rd

The OP supported this idea by saying:

I like this. David Gelertner writes about advances in computer science
happening as a pursuit of beauty, and the whole pattern movement

210

came about from a theory of architecture which strives for the “Quality
without a Name,” i.e., what distinguishes [code|buildings] that are
alive from those which are not.

Wonderful! –DE, PF-2, 5th

Later, in response to this post, ‘truth’ is brought into the conversation:

I was in a conversation a while back where it was pointed out that the
pursuit of science, generally, is one of beauty, and that it is primarily
religion which pursues truth.

That was very interesting for me. It gave me a new perspective on a
famous quote from Albert Einstein and Leopold Infield (The Evolution of
Physics, 1938): “Physical concepts are free creations of the human mind,
and are not, however it may seem, uniquely determined by the external
world.” (p.31).

It also clarified for me how often techies like myself lapse into religious
debates, the tip-off being claims about the “best” programming
language, development methodology, or operating-system model without
any grounding in empirically confirmable values. It is useful to remind
myself that it is all made up and some of it can be beautiful in its
conceptual harmony and the utility that becomes available. It's just not
the truth.41 –DH, PF-2, 16th

The thread also took an interesting educational turn by pointing out how few

teachers are able to use computers in their teaching:

One reason people might take up programming:

Because nothing else in the whole world will reliably do what you tell it
to do, when you tell it to, if you tell it correctly. (This one's for parents
and teachers.) Which leads to my next point.

There is still (look, look! at how many schools and classrooms still are
NOT using the web for publishing, even when they are well endowed
with computing resources and internet access) an awful lot of resistance
to using any technology (= hardware/software combination) in the
classroom unless the teacher in charge of that classroom has mastered
that particular technology. It is a control issue.

41 As I read this I was reminded of the end of Keats’ ‘Ode on a Grecian Urn’ where he writes
'Beauty is truth, truth beauty, that is all Ye know on earth, and all ye need to know.'

211

Even with all sorts of resources out there on the web for the curious
student/parent/teacher, you won't have programming in the classroom
on a widespread level unless you turn the teachers into programmers.
Or, to borrow Neal Stephenson's metaphor from In The Beginning Was
the Command Line42, you have to turn the teachers from Eloi (passive
consumers of “we'll give you what we think you want” technology) into
Morlocks (the ones who make the technology/write the code). –JC, PF-2,
7th

Which was quickly developed by the next poster:

And it's not just that teachers are control freaks and won't let
technology they haven't mastered take over for silly reasons. On the
contrary, I think especially young students are in need of role model
adults who aren't fazed by computers and know how to put them
through their paces.

You wouldn't trust a horse-riding academy where the trainers were
afraid of the beasts. So we definitely want Morlocks, not Eloi, showing
off computers in the classroom -- lest we get another generation of
passive “you do it for me” types. Teachers are correct not to push
computers into the limelight until they achieve Morlock status. As
professional teachers, that's their job (to stand for mastery and
competence in a particular field).

So when I imagine a healthy use of computers in a classroom, it's not
necessarily this situation where a teacher gets a CDROM going, and
then walks away (computer as babysitter, a kind of boob tube, freeing
the teacher to give his or her attention to other students).

No, my image of healthy and proper Morlock role modeling is a teacher
with a projected computer screen, writing interactive command lines in
a kind of stream of consciousness way, talking and interacting,
explaining, popping source code (some of it written by the teacher, some
of it by students, some downloaded etc.)

Of course too much sustained droning and watching someone else code
is no fun -- that's just a mode the head Morlock should have mastered.
Then the students get to turn to their own machines and teach it similar
tricks, emboldened by the model of a teacher who has no fear. –KU, PF-
2, 8th

42 <http://www.cryptonomicon.com/beginning.html>

212

This was then followed up with a wonderful story by a high school teacher of

Python exemplifying an answer to the question “why program?”:

I like all of DE’s reasons for non-geeks learning to program, but I
particularly like:

1. Build problem-solving skills
2. Create tools you need

These two go really well together also. While I have no doubt that the
logical reasoning skills that come from learning basic programming will
be of general benefit to the programming student, the benefit is abstract
and not immediate enough to be the *only* reason for doing it. I think
Python's clear syntax, extensive libraries, and rapid development
capabilities make it wonderfully suited to the other key reason: creating
tools you need. This both gives immediacy to the learning and makes it
fun!

Last weekend my 5th grade son came to me and asked if I would
randomly call out the five notes he was learning to play on the trumpet.
I told him that I had a better idea. I would write a little program for him
that he could use anytime he wanted. A few short minutes later I had
the following:

#!/usr/bin/python
import time
import random

def play():
 #[includes an improvement suggested by KU]
 notes = ['C', 'D', 'E', 'F', 'G']
 while 1:
 print "Now play " + random.choice(notes) + ""
 time.sleep(2)
play()

My son really liked this, and for the first time showed some interest in
learning about Python. –JE, PF-2, 11th

Finally, there were a few other reasons given for ‘why learn to program’:

• Work more effectively with computer support personnel, system
managers and programmers

213

• Understand the strengths and weaknesses of computers and software
for supporting real-world tasks

People who do not become programmers benefit from programming
experience because it gives them a more realistic view of how computers
and “computer people” work. There are relatively few tasks today that
don't involve computers in at least a peripheral way, so this experience
is highly generalizable. –JH, PF-2, 6th

Actually, if this were a class I think the target audience would be at-risk
teens, women re-entering the workforce and/or retraining for the tech
world, and the economically disadvantaged (a group whose constituents
change with geography). These are the folks with the most to gain by
adding programming skills to their repertoire, and often the ones with
the least inclination to learn programming having been told that it is
hard, that you must be a genius, that it's boring, etc. –DE, PF-2, 13th

Because computers have changed everything we do, being able to
program can make you a better photographer, teacher, artist, student,
architect, broker, etc.

Note, the reverse is true also, that the real world is far more satisfying
and stimulating, and by mixing previously unrelated ideas, often from
widely disparate fields, we get true innovation. Which is an argument
for programmers to learn painting, architecture, medicine, economics,
education, etc. –DE, PF-2, 15th

Conclusion of programming for fun category
Altogether, I found this to be one of the most stimulating and satisfying

threads of all the ones I read. I, too, find a kind of poetic/mathematic beauty

to a well-written program which, in many ways, is reason enough to learn

how to program. But these posters also found real-world grounds for non-

professional programmers to learn programming, for both practical and

aesthetic reasons.

Let me end this ‘Programming for fun’ section with two quotes that

point to one potential challenge awaiting the computer game designer. One

214

comes from an edu-sig poster, the other from an interview of Seymour Papert

by Dan Schwartz (1999):

I've written a functioning Reversi game that provides a framework for
defining new computer player strategies. It's meant as a general
programming project and an introduction to AI [artificial intelligence].
Reversi is one of the first games I programmed (in high school, in BASIC
on an Apple II+). I rewrote this game several times in various languages
on various computers as I learned more about programming and AI.
Most high school students would probably rather learn to program
arcade games and graphics. I think that's fine and I'm interested in
making some materials that could be used to that end. However, for the
right student, I think AI programming can be a more interesting
programming problem since it causes you to think about how humans
think, how computers think, how they are related and how they are
different. –BB, ED-14, 11th

It’s one thing for a child to play a computer game; it’s another thing
altogether for a child to build his or her own game. And this, according
to Papert, is where the computer’s true power as an educational medium
lies—in the ability to facilitate and extend children’s awesome natural
ability and drive to construct, hypothesize, explore, experiment,
evaluate, draw conclusions—in short to learn—all by themselves.

Finally, for teachers who would like to incorporate game design into their

programming classroom, one site dedicated to using Python to create games

is Pygame.43

4.7 Miscellaneous and Unknown
The miscellaneous and unknown categories contained a variety of

subject headings and key phrases. The miscellaneous category consisted of

threads where the subject line was indicative of its contents, but didn’t fit

into any of the other existing categories, nor did they form their own

43 http://pygame.org

215

categories if considered with any of the other miscellaneous threads. In other

words, they were single-thread categories. The unknown category simply

consisted of threads where the subject line was not indicative of its contents.

In both cases they are not defined by any list of specific keyword phrases; a

listing of the subject lines of these threads (along with all the other

categories) can be found in Appendix A.

We examine two topics in this section. Having just finished ‘the why of

programming,’ we now take a look at ‘the how of programming’. And, closely

related, we explore the group’s thoughts on motivation in programming.

The ‘how’ of programming
To a large extent the threads in these two categories were, in fact,

irrelevant to this dissertation. In a few cases, the threads contributed to

topics covered earlier in this chapter, and were included there. However,

there was one topic discussed that complements the rest of this chapter and

serves a fitting ending. In the words of KO, who distinguished how to code

from how to program:

I see programming and thus to some extent software engineering as
more of an art field than a science—after all, you are simply expressing
your ideas to a computer. The “science” part is that you are given a
solid, specific set of ways of expressing your ideas, and that it resembles
a mathematical language to some extent, but that really hides the fact
that you are still expressing ideas and can be as creative as you want in
devising a solution to a problem. …

What is taught in class for most computer science programs is a whole
lot of math, a lot of programming syntax, and all sorts of discussions of
abstract programming concepts like objects, recursion, etc. While that's
all nice and good, learning to code is not learning how to program. … I

216

think what people are asking for are the “laws” of how to program -
those few core ideas that make one master the 'art' of programming.
–KO, UNK-16, 12th

So, if learning to program is not synonymous with learning to code (learning

a language’s syntax), then what is it? For some, it is a kind of problem

solving:

It has been of interest to me that in various readings that I have started
over the last few months, there have been several references from
different sources about how computer programming is an extension of
the cognitive psychology of problem solving. I would extend this and
suggest that computer programming is similar to, or a branch of,
epistemology: it concerns the construction and negotiation of problem
frames and solutions to those problems, and really underscores the
processes by which we organize the world, its data, and - to top it off -
how we organize our thinking processes (analysis, hypothesis,
antithesis, synthesis - the usual Aristotelian process). From this
perspective, I think that teaching school kids how to program is not only
great vis-à-vis the development of computer/digital savvy (as was
suggested in the edu-sig docs), but also a significant step forward into
advancing structured cognitive training for kids (and adults too) to
assist them in the analysis of problems, the proposition and testing of
solutions and a meta-analytic perspective in terms of the construction,
relevance, and flow of data/cognitive constructs: computer science meets
George Kelly in education. –AH, UNK-20, 4th

For others, a way of seeing:

They [computer programs] are all representations of something in the
real world, communicated in a form that best fits a particular forum. I
would expect a GUT [Grand Unified Theory] of Programming to explain
how one takes an arbitrary phenomena and represents it in an arbitrary
computing language. ...

The problem is the translation from real to representation, it depends on
what aspects of the phenomena are deemed important enough to
translate, which depends on the forum the translation is targeted at,
and those involve value judgments. –BS, UNK-16, 9th

And of course, what is seen affects the seer, in a quantum-mechanical

understanding of the ‘life imitates art’ argument:

217

There's a question here as to whether programming mirrors our thought
process or whether, after we program for awhile, our thought process
starts to take on some features of programming. Certainly it's a great
source of metaphors.

The books usually say “objects” (in the programmed sense) are
metaphors for objects in the real world i.e. the problem space is modeled
by the solution space in terms of objects. But it works the other way too:
getting used to thinking of composition and inheritance affects the way
you see the real world (suddenly, that cell phone “really is” a subclass of
the more generic telephone class, and so on).

Good thing my dog here overrides some of those wolf methods, with
more domesticated versions. –KU, UNK-20, 5th

I come from a psych and philosophy background, and this taps into a
whole bunch of issues from those fields - the notions of 'reality' and the
constructions of reality, the idea/image or simulacra and the whole
question of representation. ... The lens of language (non-computing)
informs the way that we perceive and interact with our worlds
(introducing the ideas of discourse and interpretive frames, for
example), so it makes good sense that when one learns computing
language as a means of representing 'reality' (putting to one side the
important questions about that particular concept!), the 'world' begins to
'resemble' (or perhaps more germanely - becomes 're-assembled'!)
according to the codes of reference of that language. In philosophy, one
of the issues has been the extent of interleaving between concepts and
that which they are said to represent: when we have a concept for
microscopic particles (e.g. viruses or bacteria) it is easier to 'see' them
with a microscope. The beauty of a well-written program does not
become apparent unless one knows what one is looking at. Before Object
Oriented Programming, the notion of using objects was foreign to
programmers; once upon a time, it was unheard of not to use 'goto' in a
program; now it is almost bad manners to use 'goto'. –AH, UNK-20, 13th

And it is the perceptions and concepts of the liberally educated (who also

happen to be computer-savvy) and who have the skills to represent those

perceptions and concepts in code that become prized in the job market:

I heard a presentation by a former Disney recruiter on the radio
recently and he was talking about how his industry couldn't get enough

218

of the “hybrid artist” type -- those with good grounding in one or more of
the arts, but with enough technical background to take to a state-of-the-
art studio like fish to water. He stressed that he was talking about the
humanities, about well-rounded individuals with a lot of appreciation
for culture, contemporary as well as past. His industry wants
comprehensivists, in other words. I consider this a helpful cue. –KU,
UNK-4, 3rd

So learning to program is more than learning to code. A perceptual shift

occurs when the budding programmer begins to see patterns in the world,

and starts to understand how an algorithm might represent those patterns.

Initially these patterns are explicit, both spatial ones, like checkerboards and

picket fences, and temporal ones, like rhythms and seasons. However,

learning to program also means learning to see the implicit patterns of

constancy and changeability in whatever phenomenon is being modeled,

whether linguistic probabilities of Markov chains,44 or annual travel routes of

migratory species, or workflows in the workplace. Of course, this change in

perception is what education is about, not just programming; it’s just that the

mode of expression is different. Instead of essays or equations, students

express their perceptions in computer programs, and the greater that

expressivity, the deeper the perception of patterns becomes.

Motivation
But how do educators help their students to ‘see’ these patterns in the

world around them? One suggestion came in the context of integrating

programming into Mathematics classes:

44 A Markov chain is a process that consists of a finite number of states and some known
probabilities of moving from one state to another.

219

I was a real math head when I was younger, but a few years of high
school education educated that love right out of me. Later on in college I
revisited Calculus and had a grand time. The book's method was pretty
much the same. It didn't really work for me. But the instructor was
great. He told us stories about the formulas, where they came from, who
the people were that discovered them. He walked us through how the
formulas were discovered. He set things in a historical context.

Well, anyway, inspired by what I might be able to do with NumPy [a
Python package], I checked out a couple dozen books from the library on
Math, looking to understand Matrices and Linear Algebra. Ugh! What a
lot of boring material there is out there! Pretentious too, loaded with
terms that they don't really bother to define. There is a horrible barrier
to learning this stuff. But I have found a couple good books in there, but
the point is probably that I am inspired to learn this. And because I am
inspired, I will learn it.

Ah, but what inspires me, may not be what inspires you. Inspiring a
love of math or a love of programming is not something that can be
placed in any curriculum. It is a rare gift that some instructors have,
not nearly enough. Some writers have it too, but they are even rarer. If
you want children interested in math you can't just teach them formulas
and tricks. You have to find what interests them, what they want and
need to do, and encourage that growth. Assist them in their learning.

Inspired people with access to knowledge and people to assist them
when they ask cannot be stopped from learning. They will seek out the
maximum cognitive load. They will learn. Those with no interest in the
material will learn what they need to get by, and no more. Dumbing
math down from where it is only helps them get by with less. The
problem is not that math is too hard, it is that most see it as uninspiring
drill work, a lot of useless memorization of formulas they will never
need to know. ...

I think there should be an immense initiative to train instructors in
story telling, and give them access to great stories to tell. There should
be summer story workshops for them. Let a good quarter of their time
be spent telling stories, another part in constructing math labs, and
math contests, I bet you would see an incredible increase in the math
abilities of our children.

You want children to learn programming, learn to tell programming
stories. Give them good programming tools and tutorials and set them
loose to create their own projects. Have open source style competitions.
Have them work not just in the schools, but in the real world too. If it is

220

going to be a common literacy, it has to be very visible, and the benefits
of knowing it have to be obvious, everything around us should remind us
of those benefits. If not, it will remain a minority interest. –SF, UNK-4,
4th

This poster reminds us of the importance of motivation in learning, and one

of the key strategies for inspiring students is telling stories. Since

programming is so new relative to other school subjects, the pool from which

stories might be drawn is much smaller; nevertheless, seeking out the ones

that do exist and bringing them to life can be a central technique to teaching

students how to program. Even better would be stories that come from

personal experience. To gain those, teachers need to engage themselves in

actual programming events situated in a context that is more meaningful

than textbook exercises. Elsewhere, this same poster discusses motivation

again:

Finding what motivates can be the hard part.

One of the things we discussed in an Art of Mentoring class I took from
the Wilderness Awareness School was how we learn best when we are
excited, particularly when our adrenalin is flowing. This is one reason
memories of frightening events are so vivid. But you don't have to
frighten your students into learning, any excitement will do.

One key to mentoring is to teach to a student's passions, whatever they
are. What we learned in Art of Mentoring was how to profile students,
and how to use those profiles to manipulate them into learning. My
teachers called this Coyote Teaching, because it involves some trickery.
After you find what hooks them, you draw that out, don't give them
what they want right away, but dangle it before them some, dragging
them through things they might otherwise have avoided. Excite their
passions and manipulate them into the right situations and they will
pretty much learn on their own. My teachers called this “creating a
vacuum,” the empty gap between what they know and what they want
to know.

221

Coyote teaching works best one on one, but you could also use it in a
small classroom if you can figure out some common passions your
students have. Individual projects will also give you an opportunity to
tailor things to each student. –SF, UNK-15, 7th

This really addresses the art of teaching, where teachers discern each

student’s passion and use that to motivate them, perhaps through story-

telling, perhaps through other inspirational techniques. Teachers mustn’t

assume that students are necessarily motivated to learn how to program per

se, but should instead assume that something unique makes each student

tick, and find out what that something is and tap it in the service of a

programming project.

Conclusion of miscellaneous and unknown categories
A couple of interesting issues arose in these threads. First, we saw that

programming is more than just learning how to code; it also involves a way of

seeing patterns in the world that are amenable to computations. This was

earlier characterized as algorithmic thinking and involves creating the

algorithms by which a computation can be rendered. We also saw that

teachers need to be sensitive to individual differences in interests and

passions and should try to use those differences as a motivating factor in

designing programming projects and assignments for their students.

4.8 Summary
In this chapter we discussed the topics under each category that

contribute to our understanding of teaching Python in the secondary

classroom. We began by considering the premise that computer programming

222

is a component of computer literacy that ‘everybody’ should know, and

discovered three suggested contexts for learning programming: in a

programming course, in other subject matter courses where programming is

integrated into the curriculum, and after-school clubs. This led us to consider

a variety of factors in the education category beginning with the struggle

educators face trying to achieve any sort of integration of programming in an

existing curriculum. We also noted the need for curriculum materials, and

how that need was being met by some of the posters on the list, and the

emphasis placed on distinguishing and using both the interactive shell and

saved scripts. And great attention was paid to teaching methodologies and

concerns that posters found appropriate when teaching programming such as

involving the student’s interests, various programming styles, encouraging

planning, and working in groups.

We then discussed the issues encountered when considering computer

programming for everybody in the context of Computer Science, Mathematics

and Science. We discovered that despite much overlap among these subject

areas, computer programming for everybody constitutes a distinct subject

area in its own right, with its own set of vocabulary terms and concepts, and

that these can occasionally conflict with terms and concepts in other subjects,

especially Mathematics, creating confusion in, and resistance from

established teachers. We also determined that posters generally agreed that

these obstacles were not insurmountable but could be overcome by

223

demonstrating the advantages of fostering programming skills for achieving

curriculum benchmarks.

Finally, we positioned computer programming as being primarily a

creative activity by emphasizing its utility in artistic endeavors. We also

considered both the question of ‘why program’ and issues of motivation, and

the question of ‘how to program’ beyond simply learning a language’s syntax

by connecting perception of patterns with algorithmic expressivity.

Having presented the results from the data analysis, we turn now to the

concluding chapter to consider the results of using the methods and

procedures described in the previous chapter, and conclusions drawn from

the results presented in this chapter.

224

CHAPTER 5

CONCLUSION

It has often been said that a person does not really
understand something until he teaches it to someone

else. Actually a person does not really understand
something until he can teach it to a computer, i.e.,

express it as an algorithm.

–Donald E. Knuth

5.0 Introduction
This, the last chapter, provides us with the opportunity to reflect on the

preceding research and consider what has been learned, as well as offer a few

possible trajectories for further research, and end with how these results

might be seen to fit into a larger context of education beyond educational

computer programming. We turn first to the findings on the methods and

procedures used in this dissertation beginning with a summary of those

procedures and followed by my thoughts on them. We then turn to three main

conclusions drawn from the content results, followed by suggestions for

future research. We then end this dissertation with a few thoughts centered

on the notion of convivial programming.

225

5.1 Method Findings
The data used in this research was in a format known as unstructured

text. Each data record originated as an email message, so it was accompanied

by limited meta-information such as name, date, time, subject and email

address, but the body of the message had no additional information other

than the text itself (and any quoted text that might have been included to

establish context for the reader). Educational research data is often in an

unstructured text format, for example, interview transcripts, talk-aloud

transcripts, instant messaging transcripts, online news articles, weblog

entries, etc. So, let us review the procedures that were followed in working

with this newsgroup archive and discuss those aspects that proved beneficial,

and those that were problematic in the hope that these procedures might be

usefully employed by future researchers having to deal with large,

unstructured corpora.

Use a database
The most prominent feature of the data downloaded from the edu-sig

website was its bulk. There were more than 2700 messages archived over the

3+ years. Thus, my most immediate concern was to select those messages

that were most likely to contribute to the topic. Before that, however, the

data had to be assembled into a manageable form.

The data’s original incarnation was one large, single file, in standard

mailbox (.mbox) format. (Other researchers working with unstructured text

might begin with a folder full of text files, or perhaps a large server logfile, or

226

some other format.) To work with the data, it is virtually imperative that it

be stored in a database, preferably a relational one. This enables several

different tasks that will prove invaluable when working with and

manipulating the data:

• Sorting the data
• Searching the data
• Selecting the data
• Counting the data
• Importing and exporting the data
• Randomizing the data

And if the database supports relationships, you can generate tables that

isolate specific features of the data. For example, with the present data, I

generated both a ‘threads’ table and a ‘posters’ table that brought the data

together in specific configurations (by thread and by poster) that facilitated

analysis. Sorting, searching and counting database records is important for

generating aggregate statistics that profile the data. Importing and exporting

is especially important if you work with more than one database; for example

a relational database for storing the data, and a qualitative analysis package

for fine-grained coding of the data. And finally, randomizing the data proved

important for the next step in data reduction.

Get to know the data
Having gotten the data into a database, two steps awaited, but it was

not clear which should go first. One step was to reduce the data, since there

was too much to read in its entirety, and the other step was to get to know

the data by reading a random sample. My preference was to get to know the

227

data first, since I thought that knowing a bit about it might inform the

subsequent data reduction step. So, of the original 2757 messages in the

database, I read a 10% random sample.

In this particular case, there was an additional consideration: the

messages needed to be grouped by subject, that is, threaded. Other data

would use different grouping criteria depending on the research topic, such as

poster id, date range, messages containing particular keywords, or other

message classification criteria such as thread initiator, thread response, type

of response (for example, supportive, alternative, hostile, rejoinder or other),

or containing other kinds of speech acts. I split my 10% sampling into two

groups of 5%: one sample drawn from the set of unthreaded messages, and

the other sample drawn from the set of threaded messages. I then read those

messages, beginning with the unthreaded samples, and finishing with the

threaded samples, which were read thread by thread in chronological order to

maintain continuity and context. While reading, I noted the topics and

themes that each message addressed, irrespective of my dissertation’s topic.

This way I had a global overview of the range of topics being discussed and

developed an understanding of what to expect in the data. This familiarity

proved crucial during the later categorizing step.

Discard irrelevancies
This step would be difficult to generalize to other research data, so I’ll

simply recount what heuristic was followed in the present case. It was clear

228

that I would be excluding data at the thread level, not the message level. I

was searching for discussions (threads) that involved more than a few posters

lasting more than a few messages, so excluding by thread seemed most

appropriate for this study.

I then made two measures on each thread: message length and poster

diversity. After calculating the mean for each measure, I excluded those

threads with a message length less than the mean (5 in this study) or less

than the mean number of different posters (3) assuming that whatever

threads were left would have a reasonable chance of containing interesting

discussions. This reduced the number of threads by 80%, from 757 to 150.

Classify the threads
My next step was to classify the 150 threads based on the subject lines.

Keep in mind that I had already given a sample of the data a close reading

and thus had an expectation of what a subject line might imply as to the

contents of the threads. So, I was able to group the threads into readily

identifiable categories based on the subject lines leaving me with 150

categorized ‘black boxes’ of text with only a subject line visible to (possibly)

indicate each of their contents. At this point I felt that simply excluding

certain categories (graphics, editors, etc.) would be sufficient to weed out

most of the remaining irrelevancies, but I also felt that having more of a

glimpse into the contents of each thread (beyond the subject line) would be

welcome for a couple of reasons: One, it would allow me to choose which

229

threads in each category to keep or discard, and two, I could feel more certain

that I wasn’t inadvertently discarding an important thread by discarding a

whole category of threads.

Characterize the data
What I needed was some kind of automatic text classifier system. There

are a fair number of such systems available, but most require a training

period where human classified text samples are given to the classifier which

can then proceed to classify new material. For some research purposes, this is

probably preferable, especially if there is prior, already classified data

available. However, I was more interested in finding a technique that

wouldn’t require prior knowledge of the textual domain, could be used on

unstructured text data, was freely available and could run on my machine.

PhraseRate fulfilled those conditions (and was the only application, other

than text graphs, I found that did). With it, I was able to generate a list of 10-

20 keyword phrases that characterized each thread, allowing a dimly lit

glimpse into what the posters might be discussing.

I also informally tested the reliability of the PhraseRate results by

comparing its output with that of another technique, text graphing. I found

enough of the PhraseRate keyphrases in the nodes of the corresponding text

graphs to feel confidence in its results. (I discuss areas of future research for

these two methods shortly.) Thus, using the subject line of the thread, the list

of key phrases generated by PhraseRate, and the category in which the

230

thread had been placed, I was able to reduce the number of relevant threads

about 30%, from 150 to 108, by discarding threads on topics not central to

this study.

Thoughts on the procedures
Qualitative researchers who have an abundance of unstructured text

data to process have to find ways of reducing their datasets to manageable

and germane levels. The procedures developed and described in this study

may well be applicable to other researchers in similar situations. However, a

few caveats are in order.

Procedure steps
First, I believe that two of the steps were done in the reverse order of

what would be optimal. Specifically, it makes more sense to first characterize

the data with an automatic text classifier, and remove the irrelevant threads,

and then classify the remaining threads. The main reason for this is that the

text characterization data (e.g. keyword phrases) can then be used while

classifying the remaining data. So a better sequence would be:

1. Put the data into a database
2. Read a random, representative sample of the data
3. Develop and apply heuristics to remove low value data
4. Apply automatic text classification algorithms to further extract the high

value data
5. Categorize the high value data into analyzable chunks

It may be possible to automate the last step (for content-based analyses

rather than communicative-based ones), that is, given a set of keyword

phrases for each thread, one might do a statistical cluster analysis on that

231

metadata to clump similar threads into categories. This might prove

especially attractive for larger datasets. However, in the present study,

grouping by hand provided satisfactory results.

Initial heuristic
Second, I was especially pleased with the initial data reduction step,

that is, selecting threads with message lengths and poster diversity greater

than the mean. This particular heuristic proved remarkably effective at

isolating the thoughtful and sustained discussions in the data that brought

out a variety of viewpoints and opinions among the posters. In retrospect, I

was, perhaps, a bit too conservative in its use by erring on the side of

including threads on the shorter end of the spectrum. As it turned out, most

of the really interesting data was located in the longer threads, presumably

because posters had time to develop their arguments through more give and

take.

Subject headings
Third, using subject headings to categorize the threads proved to be

fairly reliable. Although I occasionally came across a thread (say, in the

education category) that really belonged in a different category, for the most

part, thread categories seemed to ‘hang together’ rather nicely. At least some

of this can be attributed to gaining a ‘feel’ for the data from the initial

random sample reading, but how much this contributed, I could only guess.

Subject lines, even when categorized correctly, can also be misleading in

232

another sense: sometimes an initial posting was followed up by an off-topic

remark that then became the main focus of the thread. Roughly half the time

this would be fortuitous, as the new topic would prove to be more pertinent to

the research, while the other half the new topic would unfortunately wander

into relative irrelevancy.

PhraseRate and TextGraphs
Fourth, although the PhraseRate and TextGraph techniques afforded a

view of the contents of unread threads and assisted in the winnowing of the

data, I felt there was room for improvement in each method. One limitation

that was visually obvious in the TextGraph technique (and presumably

applies to the PhraseRate results, although this wasn’t tested) was that if the

topics of the text being graphed were too spread out, or had too little focus,

the resulting graph lost all meaningful structure. This was a surprising

discovery because my earlier research with Text Graphs (Miller, 1996) only

explored text that had well-defined foci, and I was unaware of this limitation.

During the course of this investigation, I generated text graphs for each

of the eight categories, (each of which consisted of from 5 to 33 threads, each

of which consisted of from 5 to 42 messages.) Most of these graphs had an

extremely simple starburst pattern where one or two central nodes were

connected to all or most of the other nodes. There was simply too much text

focused on a multitude of topics to render a meaningful structure to the

category. The smaller categories did not exhibit the starburst pattern, but

233

instead, formed a network of haphazard links among the nodes that had no

discernable structure (where ‘structure’ can be seen as central nodes

surrounded by peripheral nodes). On the other hand, text graphs of

individual threads had remarkably well-defined structures, presumably

because the text was focused on only a few defined topics. Thus, the Text

Graph technique as it currently stands, is mostly useful for generating a

profile of text that has inherent internal structure.

One way to overcome this limitation would be to allow the researcher to

choose which terms were to be graphed. As it is now, the top 50 or 75 most-

often occurring terms are automatically chosen for graphing; these tend to

overshadow the more interesting research terms as the amount of text

increases.

It also isn’t clear to me which method, PhraseRate or TextGraphs is the

more efficacious for classifying text. I would like to see a study where the

same set of threads was classified four different ways: one by people who

actually read the threads before classifying them, another by people who only

had the subject line and the PhraseRate results, third, by people who only

had the subject line and the text graphs, and fourth, by people who only had

the subject lines. Then we might see how much those particular algorithms

contribute to classifying unread, unstructured textual data. My feeling is that

an algorithmic blend of the two methods might be ideal, where the two-

dimensionality of the text graph coupled with the succinctness of the keyword

234

phrase results might generate the most robust ‘snapshot’ of the data. This

echoes the direction of research being pursued elsewhere as reported in The

Economist (2003).

Newsgroups as a data source
Finally, the question arises as to the value of the source of the data, that

is, what are the strengths and limitations of analyzing data that originates

with online newsgroups such as the Python edu-sig for educational research

purposes? One major strength of this type of data is that many of the

participants are well-versed both in computing issues and classroom issues,

thus the perspectives they bring are informed by both sets of expertise. Not

all participants are so informed; however, the diversity of experiences

provided by other participants further adds to the richness and complexity of

the ensuing discussions. Thus the potential, in such groups, for discussions

actually containing data that proves useful to the researcher, I believe, is

high. The main challenge in dealing with such data is sifting through the

‘message-silt’ in order to retrieve the useful nuggets of information. Also,

these nuggets, instead of being used directly as I did, could instead be used

by researchers to familiarize themselves with a group’s ideas and opinions in

order to construct more complete alternative instruments for data collection,

such as interview protocols, questionnaires, survey instruments, or analytical

frameworks for analyzing related data.

235

Another strength that researching relevant newsgroups provides is

access to motivated educators. That is, one can fairly readily identify the

posters who are actively teaching an area of interest, or using a method of

interest, and can use email to contact those educators to ascertain their

interest in participating in further research, or simply initiate discussion to

obtain more detailed information than what is being provided in the

newsgroup.

Nevertheless, there are some limitations to be aware of. Perhaps the

most prominent is the ‘noise’ that many newsgroups generate, that is, I found

there were some social interactions that did not materially contribute to the

group’s ostensible charter. Personal feelings inevitably get hurt, especially in

an unmoderated forum, and reactions to that hurt sometimes became sources

of new hurts, perpetuating an unfortunate cycle of recriminations. For some

researchers, such interactions might actually be the richest source of data,

but for the present purposes, these data were considered noise.

Another constraint to be aware of is that the distribution of participants

necessarily limits the topics that can reasonably be discussed. That is, a

researcher interested in exploring educational conditions within a specific

school district, or state, would not turn to a newsgroup like edu-sig, which is

more global in nature. A newsgroup set up just for the educators in that

district or state would be a more reasonable source of data since the topics

covered would more likely be focused on local concerns.

236

We now turn to the findings derived from the results of the content

analysis of the data.

5.2 Content Findings
This dissertation began, in Chapter One, by considering the nature of

computer literacy and claiming that computer literacy is becoming important

in education in a way analogous to the way print literacy is currently

important; and that therefore, it would soon become as important to learn

how to program a computer as to know how to write. I showed how reading

and writing enable us to learn, and how computer literacy, including the

ability to program, will increasingly be needed to enable our learning.

I then, in Chapter Two, considered the steps involved with creating a

computer program and what the issues were for teaching those steps. This

was followed by a discussion of the Python programming language and the

genesis of the Python edu-sig newsgroup as part of the Computer

Programming for Everybody effort. Then, in the fourth chapter, I looked at

their online discussions surrounding the teaching of Python, and drew from

them heuristics and rubrics for such teaching.

It is time to revisit the original thesis topic of this dissertation: What

considerations are most important in teaching Python as a first programming

language in a secondary school setting? We are now in a position to place

these considerations into three major findings: programming as writing,

programming to learn, and executable notations.

237

Programming as a literate activity
Perhaps the most significant finding from this research is that not only

is programming like writing, as the analogy:

reading : writing :: using computers : programming computers

suggests, but additionally, programming is a form of writing, as we have seen

in numerous ways. For one, the actual code written to instruct the computer

what to do is expressed using English terms and familiar punctuation

symbols, and with the Python language, using a syntax that is more user-

friendly than most, if not all, other computer languages. More importantly,

this code needs to be supplemented by extensive comments that describe and

explain to human readers what the code is doing, and what the algorithm

accomplishes. Recall Donald Knuth’s comment regarding programming:

Let us change our traditional attitude to the construction of programs:
Instead of imagining that our main task is to instruct a computer what
to do, let us concentrate rather on explaining to human beings what we
want a computer to do. (Knuth, 1992, p. 99)

This, in turn, presupposes considerable thoughtfulness, or a kind of pattern

analysis, by the programmer as to the most strategic approach towards

accomplishing the programming goal and explaining that approach to others;

which, in turn, presupposes an apperceptive intuition of what it is that needs

accomplishing, and can be accomplished by computing.

We can also consider computer programming as writing in another

sense. In the first chapter we talked about the difference between

representations and expressions, corresponding to “two modes of cognitive

238

functioning, two modes of thought, each providing distinctive ways of

ordering experience, of constructing reality” (Bruner, 1986, p. 11). As a

reminder, I repeat the rest of Jerome Bruner’s quote here:

Each of the ways of knowing, moreover, has operating principles of its
own and its own criteria of well-formedness. They differ radically in
their procedures for verification. A good story and a well-formed
argument are different natural kinds. Both can be used as means for
convincing another. Yet what they convince of is fundamentally
different: arguments convince one of their truth, stories of their
lifelikeness. The one verifies by eventual appeal to procedures for
establishing formal and empirical proof. The other establishes not truth
but verisimilitude. (Bruner, 1986, p. 11)

We called (via Rorty) the ‘well-formed arguments’ representations, and

the ‘good stories’ expressions and then grouped the philosopher-scientists

with those who value true representations while the rhetorician-artists were

grouped with those who value lifelike expressions. It might initially appear

from Bruner’s description that programming lies more in the domain of

creating representations. We represent a logical argument, in code, to the

computer as a means of “fulfilling the ideal of a formal, mathematical system

of description and explanation” (Bruner, 1986, p. 12). However, we also saw

in the second chapter the importance of viewing programming as being

concerned with creating cognitive metaphors, where the programmer’s task is

to express a real-world phenomenon as an algorithm with as much ‘cognitive

lifelikeness’ as possible.

What this suggests, then, is that programming computations is a form of

writing that expresses both forms of knowing, where representations (in code,

meant for the machine) and expressions (in comments, meant for the human

239

reader) appear in tandem, convincing us of both truthfulness and lifelikeness.

This, perhaps, is one reason computer programming is considered ‘hard’; it

demands both kinds of cognitive functioning, both kinds of knowing. To

create a functioning program, we are required to express an algorithm that

simulates a state or process in the world to other readers, and to represent

that algorithm within the formal constraints of the programming language to

the computer.

Thus, the first important consideration for teachers of Python as a first

computer language is to think of programming as writing. And as such, it is

more than just learning how to write correct code, it also develops creativity

and imagination, and requires aspects of representations (well-formed

arguments) and expressions (good stories) to be convincing, or well-written.

Programming to learn
In the first chapter we discussed how learning to read enabled reading

to learn, how learning to write enabled writing to learn, and that by analogy,

learning to program enabled programming to learn. Then, in the second

chapter, we briefly used another analogy, comparing the learning of

programming with the classical trivium. The trivium taught Latin as the

means of learning how to learn, focusing on grammar, dialectic (logic and

disputation), and rhetoric. (The oral and written aspects of each were

emphasized differently through history.) The result was not an accretion of

disparate facts and figures, but rather a means of learning. The student

240

entered the succeeding quadrivium armed with knowing how to learn the

higher subjects. In other words, he or she had learned how to learn.

We see that there are tantalizing parallels to be made by substituting

‘Python’ for ‘Latin’ in a computational version of the trivium. We see that

learning to program also involves learning a language’s syntax. But beyond

that, we see a dialectic occurring as the programmer interacts with the

machine (via the interactive shell and running scripts), learns the effects and

results of various programmatic constructs, and comes to know how the

machine operates (gaining a ‘sense of the mechanism’). And we also see that

learning to program involves learning a kind of ‘rhetoric’, that is, the

algorithms and patterns that ‘persuade’ the machine to yield the results we

seek.

Recall the quotes cited by Gal-Ezer and Harel (1998, p. 79) where they

identified a dual nature to Computer Science:

Computer science has such intimate relations with so many other
subjects that it is hard to see it as a thing in itself.
–M.L. Minsky, 1979

Computer science differs from the known sciences so deeply that it has
to be viewed as a new species among the sciences.
–J. Hartmanis, 1994

The quote by Hartmanis represents the trivium stage of learning

programming; while the quote by Minsky represents a computational

quadrivium stage where programming plays an increasingly important role

in the practice of so many disciplines.

241

Thus, the second important consideration for teachers of Python as a

first computing language is to think of computing more as a means of

learning than as an end in itself. The purpose of this computational trivium

is not an accumulation of unrelated facts and figures, but is instead the

acquisition of the means of knowing how to learn something that is

computationally knowable; this then enables the learner to master the

subjects in the modern version of the quadrivium. This approach to teaching

computer programming also suggests a solution to the question of where to

begin integrating it into the curriculum. Following this classical model, we

ought first to teach the language until it is mastered, and then use the

acquired tool manipulation skills in the service of learning the higher-level

subject matter.

Executable mathematical notation and regular expressions
The classical quadrivium consisted of geometry, astronomy, arithmetic

and music. These were the subjects learned after the trivium (using Latin)

had been mastered. We have also seen in this dissertation the suggestion

that learning to program (a computational trivium) can lead to learning other

subjects (say, a computational quadrivium) in ways that differ significantly

from current practice. The most obvious example from our results is

Mathematics. Programming languages demand unambiguous notation in

their expressions and statements. An equals sign (=), for example, cannot

serve two functions, signifying both equality and assignment, as it does in

242

printed mathematical notation (where context enables the human reader to

disambiguate the meaning). Furthermore, machines can now easily process

the necessary computations to arrive at a solution or solve an equation, thus

radically changing what knowledge is deemed mathematically important

(Kaput, 2002). Instead of learning how to do the computations, it now

becomes imperative to learn how to set up the computations, to know how to

precisely express a situation using computational tools, in short, how to

become fluent with executable mathematical notation.

A related notion of ‘executable notation’ exists as a subset of many

programming languages and deals primarily with textual manipulation

rather than numerical calculation: that of the ‘regular expression’. This is a

notation where one can express the process of going through a (sometimes

large) body of text and selectively choosing (and perhaps changing) those

portions that match a given pattern. Use of this notation appears not only in

programming languages but also in more and more software applications

where users with some programming experience have expressed an interest

in such functionality being incorporated. Here, too, we move away from doing

the manipulation (manually finding all occurrences of the pattern in

question) to setting up the manipulation (expressing the pattern as a regular

expression) and thus becoming increasingly computer literate, letting the

machine do what it excels at and letting humans do what they excel at.

243

We also know from other reports how using executable notation and

creating simulations in science classes leads to different understandings of

the subject matter. To recall Sherin’s (1996) conclusion:

Central to this endeavor is the notion that programming languages can
be elevated to the status of bona fide representational systems for
physics. ... A conclusion of this work is that algebra-physics can be
characterized as a physics of balance and equilibrium, and
programming-physics a physics of processes and causation. (p. 3)

We also recall Wolfram’s advances in scientific simulations using relatively

simple programs:

But the crucial point that was missed is that computers are not just
limited to working out consequences of mathematical equations. And
indeed, what we have seen in this chapter is that there are fundamental
discoveries that can be made if one just studies directly the behavior of
even some of the very simplest computer programs. (p. 45)

Thus, the third important consideration for teachers of Python as a first

computing language is to understand that integrating programming into

curricular activities may significantly alter what knowledge becomes

important to learn in many of the traditional subject areas, as well as how

that knowledge is learned. Recall also that this is what Papert was pointing

to in his discussion of constructionism:

The presence of computers begins to go beyond first impact when it
alters the nature of the learning process; for example, if it shifts the
balance between transfer of knowledge to students (whether via book,
teacher, or tutorial program is essentially irrelevant) and the production
of knowledge by students. It will have really gone beyond it if computers
play a part in mediating a change in the criteria that govern what kinds
of knowledge are valued in education.

244

5.3 Summing Up
We have explored in this dissertation a range of suggestions for teaching

a particular computer language, Python, in academic settings. We have seen

how many of the suggestions follow a connectionist and constructionist

philosophy, favoring a learning-by-doing approach. We have also explored a

range of issues that are likely to arise in such settings, and discovered

suggestions for dealing with those issues. In this last section of the

dissertation, I make a few suggestions for where further research is

indicated, and end with a few remarks about convivial programming.

Suggestions for future research
As noted in Chapter Four, there are several secondary classrooms

around the United States where Python programming is taught. It would be

interesting to compare the different teaching strategies used in each

classroom, both as self-reported by the teachers themselves, and through

classroom observation. It might also be interesting to compare those classes

with a sampling of Advanced Placement Computer Science classes, perhaps

by measuring programming proficiency, if fair criteria for comparison could

be established.

However, one implicit goal of Computer Programming for Everybody is

to enable students to use programming in their other classes. For those that

are learning Python, do such opportunities arise, and are they able to utilize

their programming skills to advance their learning in other areas? This, too,

could be compared with students in AP computing classes to test the

245

hypothesis that Python favors such ‘programming to learn’ activities due to

its relative user-friendliness compared to C++.

Although the issue was not discussed in this dissertation, there are

graphical interactive development environments (not necessarily Python-

based) that offer a graphical user interface to aid in the creation of computer

programs. These are usually meant to assist with the development of another

graphical user interface for the new application being coded. It would be

quite interesting to explore the differences in student learning between using

these graphical interfaces and the more traditional command-line interfaces

that we considered here.

Probably the greatest impediment to wider adoption of computer

programming in school settings is the lack of adequate teacher education.

Few teachers take it upon themselves to learn programming, and fewer still

master it well enough to incorporate it into either their existing classes, or

new classes specifically designed to teach programming. Thus, research is

needed to provide guidance as to how to rectify this situation: Require

programming in teacher education programs? Offer continuing education

credits? Seek out computer professionals that are willing to teach? Develop

student mentors to assist teachers with programming activities? I doubt that

any solution will result in revolutionary changes, but if promising

evolutionary approaches can be identified, then eventually there should be

enough teachers comfortable with computer programming that students will

246

not have difficulty using their programming knowledge in classroom learning

activities.

Convivial programming
One aspect of programming with Python that was not strongly

emphasized in this dissertation is the fact that it is part of the Open Software

movement, that is, not only is the compiled product available for free, the

source is freely available too. One result of this, which applies to other

popular open source products such as the Apache web server, the Linux

operating system, and the MySQL relational database server, is that there is

an extensive community of fellow programmers and software users available

to promote the use and development of those products. One consequence of

this community is that the ‘Woes of the Craft’ are significantly mitigated. The

frontispiece to this dissertation highlighted the ‘Joys of the Craft’ by

Frederick Brooks (1975); however, he also described a complementary aspect

to programming that bears repeating:

The Woes of the Craft

Not all is delight, however, and knowing the inherent woes makes it
easier to bear them when they appear.

First, one must perform perfectly. The computer resembles the magic of
legend in this respect, too. If one character, one pause, of the incantation
is not strictly in proper form, the magic doesn't work. Human beings are
not accustomed to being perfect, and few areas of human activity
demand it. Adjusting to the requirement for perfection is, I think, the
most difficult part of learning to program.

Next, other people set one's objectives, provide one's resources, and
furnish one's information. One rarely controls the circumstances of his
work, or even its goal. In management terms, one's authority is not

247

sufficient for his responsibility. It seems that in all fields, however, the
jobs where things get done never have formal authority commensurate
with responsibility. In practice, actual (as opposed to formal) authority
is acquired from the very momentum of accomplishment.

The dependence upon others has a particular case that is especially
painful for the system programmer. He depends upon other people's
programs. These are often maldesigned, poorly implemented,
incompletely delivered (no source code or test cases), and poorly
documented. So he must spend hours studying and fixing things that in
an ideal world would be complete, available, and usable.

The next woe is that designing grand concepts is fun; finding nitty little
bugs is just work. With any creative activity come dreary hours of
tedious, painstaking labor, and programming is no exception.

Next, one finds that debugging has a linear convergence, or worse,
where one somehow expects a quadratic sort of approach to the end. So
testing drags on and on, the last difficult bugs taking more time to find
than the first.

The last woe, and sometimes the last straw, is that the product over
which one has labored so long appears to be obsolete upon (or before)
completion. Already colleagues and competitors are in hot pursuit of
new and better ideas. Already the displacement of one's thought-child is
not only conceived, but scheduled.

This always seems worse than it really is. The new and better product is
generally not available when one completes his own; it is only talked
about. It, too, will require months of development. The real tiger is
never a match for the paper one, unless actual use is wanted. Then the
virtues of reality have a satisfaction all their own.

Of course the technological base on which one builds is always
advancing. As soon as one freezes a design, it becomes obsolete in terms
of its concepts. But implementation of real products demands phasing
and quantizing. The obsolescence of an implementation must be
measured against other existing implementations, not against
unrealized concepts. The challenge and the mission are to find real
solutions to real problems on actual schedules with available resources.

This then is programming, both a tar pit in which many efforts have
floundered and a creative activity with joys and woes all its own. (pp. 8-
9)

248

Keep in mind that Brooks was discussing professional programmers in a

commercial setting, thus some of his concerns are less applicable in an open-

source setting. Nevertheless, access to an extensive community of like-

minded programmers eases these woes and goes a long way towards forming

what we might call ‘convivial programming’.

The term ‘convivial’ echoes Ivan Illich’s book, Tools for conviviality

(1973) where he called for “autonomous and creative intercourse among

persons, and the intercourse of persons with their environment” (p. 24). Open

source software embodies this notion of convivial programming, as does

programming with Python.

I bring up this notion of conviviality for a reason. Most of the research in

this dissertation focused on what Illich called ‘curricular’ learning, which is

learning that takes place in the context of mainstream schooling institutions.

We have seen the difficulties faced by educators willing and wanting to

incorporate computer programming into such classrooms. Although I hope

that the research in this dissertation might help with the growth of

programming classes in curricular settings, I don’t want to suggest that this

is the only avenue by which computer programming with Python can be

promoted. The open-source community is a prime example of a ‘tool for

conviviality’ where the interested individual can engage not in the ‘curricular’

learning of programming, but in a ‘planned’ or ‘self-directed’ learning effort.

249

Elsewhere, Illich describes the question that a planned learning effort should

begin with:

The planning of new educational institutions ought not to begin with the
administrative goals of a principal or president, or with the teaching
goals of a professional educator, or with the learning goals of any
hypothetical class of people. It must not start with the question, “What
should someone learn?” but with the question, “What kinds of things
and people might learners want to be in contact with in order to learn?”
(Illich, 1971, pp. 77-78)

Again, the open-source community constitutes a wealth of convivial ‘things’

(for example, software projects, tutorials, websites and documentation) and

convivial people (online newsgroups, for example) that learners might want

to be in contact with in order to engage in the planned effort of learning

programming for themselves. (Appendix B points to many resources that can

aid such an effort.)

In Deschooling Society, Illich (1971) quotes Aristotle in distinguishing

between two kinds of activity that relate to curricular and planned learning:

Aristotle had already discovered that “making and acting” are different,
so different, in fact, that one never includes the other. “For neither is
acting a way of making—nor making a way of truly acting. Architecture
[techne] is a way of making—of bringing something into being whose
origin is in the maker and not in the thing. Making has always an end
other than itself, action not; for good action itself is its end. Perfection in
making is an art, perfection in acting is a virtue.”45 The word which
Aristotle employed for making was “poesis,” and the word he employed
for doing, “praxis.” A move to the right implies that an institution is
being restructured to increase its ability to “make,” while as it moves to
the left, it is being restructured to allow increased “doing” or “praxis.”
Modern technology has increased the ability of man to relinquish the
“making” of things to machines, and his potential time for “acting” has
increased. (p. 62)

45 Nichomachean Ethics, 1 140.

250

Another way to understand this difference between a ‘move to the right’

and a ‘move to the left’ is to think of the move to the right as being

teleological, while the move to the left as being ontological. That is, as

Aristotle says, “Making has always an end other than itself,” which is

teleological in nature, while “good action itself is its end” suggests an

ontological nature.

Illich intends that the “making” in this passage be understood as “the

making of curricular objectives in students’ minds” by schools, which

manifests as curricular learning artifacts such as test scores or book reports.

However, Illich is arguing instead for a ‘move to the left’ where individuals

can more fully engage in planned learning activities to occupy their leisure

time (for example, after-school computer clubs, or online tutorials, or

volunteering for a non-profit organization). Rather than viewing knowledge

teleologically as a possession (of things ‘made’ by the curriculum), he is

advocating the viewing of knowledge ontologically as an aspect of being in the

world, as immanent in an individual’s actions. This is fully consonant with

the objectives of the trivium as to learning how to learn, and convivial

programming as a means of programming to learn.

Thus, I have tried to show in this dissertation the value of learning

programming, not as a specialized, professional skill (although it can be that),

but as an essential component of a liberal arts curriculum. Programming is a

251

literate activity that engages one’s creative and imaginative faculties, and is

a new mode of expressing thoughts, ideas, patterns, algorithms and concepts

in a way that was largely unavailable to mass education until very recently

(historically speaking). I expect that the adoption of programming into the

curriculum will take time, time for teachers to learn and assimilate the value

of programming into their lives and teaching methods, time for

administrators to see and understand the value of programming as a means

of increasing students’ computer literacy, and time for Python (or some other

language) to garner sufficient mindshare as the language of choice for

‘everybody’ learning how to program a computer. In the meantime, in the

absence of curricular opportunities to learn programming, a convivial

alternative exists in the open source community for individuals to invest

their leisure time and to begin savoring the joys of the craft.

252

APPENDIX A

CHOSEN THREAD SUBJECT HEADINGS BY
CATEGORY

Thread Category
(# of threads)

(Reference Code)
Thread Subject Header

(# msgs / # different posters)
Education

(33)
ß (ED-1) Age groups (20/13)
ß (ED-2) Pedagogy, programming environments, and readings
(6/4)

ß (ED-3) Hello from a CS teacher (16/9)
ß (ED-4) My experience teaching Python (13/7)
ß (ED-5) OO in K-12 (6/3)
ß (ED-6) Teaching Python at a Junior College level (5/5)
ß (ED-7) Teaching Middle-School Math with Python (21/8)
ß (ED-8) Socratic methods (8/5)
ß (ED-9) Number-line graphics for teaching arithmetic (6/3)
ß (ED-10) Proposing/defending Python in a curriculum (7/7)
ß (ED-11) Beginner programs (8/6)
ß (ED-12) Python comes to Henry Sibley H.S (5/4)
ß (ED-13) College CS courses (8/5)
ß (ED-14) Intro and question: assignments/projects for year
end (11/10)

ß (ED-15) Text compression as a learning tool (6/4)
ß (ED-16) Interactive tutorial (12/7)
ß (ED-17) Disney learning (5/3)
ß (ED-18) Lesson plan collection (9/5)
ß (ED-19) Python Comp Sci course (5/5)
ß (ED-20) Teaching python (12/5)
ß (ED-21) Assigning homework (7/6)
ß (ED-22) Teaching students to use CVS (5/4)
ß (ED-23) Student assignment styles (6/5)
ß (ED-24) Who is teaching Python (8/7)
ß (ED-25) Encouraging students to plan effectively (6/4)
ß (ED-26) The right learning environment (20/7)
ß (ED-27) Python anxiety (18/10)
ß (ED-28) Python @ education: what are your problems (16/10)
ß (ED-29) Girls, women programming and Python (20/12)
ß (ED-30) BBC NEWS UK Education GCSE 'gender gap' sparks
concern (12/6)

ß (ED-31) Techniques to force students to plan (5/4)
ß (ED-32) Does any such tutorial exist (10/4)
ß (ED-33) An outline I'm using (6/4)

253

CP4E
(6)

ß (CPE-1) Python for non-programmers (16/7)
ß (CPE-2) 'Killer Apps' vs. CP4E (7/4)
ß (CPE-3) Future of CP4E after CNRI (23/8)
ß (CPE-4) CP4E VideoPython learning to teach/teaching to
learn (10/4)

ß (CPE-5) JPython and CP4E (7/5)
ß (CPE-6) CP4E-2002 (11/6)

Python/Computer
Science
(15)

ß (PCS-1) Stop the insanity -- no more case sensitivity
discussion (5/4)

ß (PCS-2) Beginner trouble, indexing starting w/'0' (7/7)
ß (PCS-3) Natural language programming (15/6)
ß (PCS-4) Python accessibility (8/7)
ß (PCS-5) Computer science without all that 'heavy math'
stuff (11/8)

ß (PCS-6) Measuring python (6/4)
ß (PCS-7) Analyzing algorithms (12/6)
ß (PCS-8) Equality and assignment notation (6/6)
ß (PCS-9) Python for algorithms and data structures (12/7)
ß (PCS-10) Python for AI (9/6)
ß (PCS-11) Python sequences by reference - how to make clear
(36/8)

ß (PCS-12) Top 5 All Time Novice Obstacles => #2 Helping
help (6/4)

ß (PCS-13) Top 5 All Time Novice Obstacles => #3 Where am I
(15/6)

ß (PCS-14) Interactive interpreter: expressions vs.
statements (5/5)

ß (PCS-15) Lines of code and programmer time (7/6)

Math-related
(15)

ß (MTH-1) Rational division (10/7)
ß (MTH-2) Exponentiation should float (5/4)
ß (MTH-3) Long integer fractions (14/6)
ß (MTH-4) Sieve of Eratosthenes (14/5)
ß (MTH-5) More Pythonic precalculus (9/4)
ß (MTH-6) Long floats (6/3)
ß (MTH-7) Goofing with groups (7/4)
ß (MTH-8) Algebra + Python (23/6)
ß (MTH-9) More spillover re the division PEP (16/5)
ß (MTH-10) Calculating area of a surface plane on a
spherical body (7/5)

ß (MTH-11) Math weirdness (6/5)
ß (MTH-12) Why 0**0 == 1? (5/4)
ß (MTH-13) Types and true division (42/8)
ß (MTH-14) Rationals (26/9)
ß (MTH-15) Where mathematics comes from (20/4)

Science-related
(5)

ß (SCI-1) The Educational Robotics Platform (17/6)
ß (SCI-2) Scientific Python 2.2 (5/3)
ß (SCI-3) Modeling (6/3)
ß (SCI-4) Periodic table (6/5)
ß (SCI-5) Python promises a revolution (8/4)

Programming for
fun
(7)

ß (PF-1) Python programming for kids (16/6)
ß (PF-2) Programming for the fun of it (29/15)
ß (PF-3) Cards n stuff (10/4)
ß (PF-4) Observations from the Northwest Science Expo (7/6)
ß (PF-5) Python for fun (10/5)
ß (PF-6) Programming for artists (30/7)
ß (PF-7) Programming for fun quote (7/4)

254

Miscellaneous
(7)

ß (MISC-1) Beyond 3D (5/4)
ß (MISC-2) Question about a programming system (11/5)
ß (MISC-3) PEP0238 lament (13/8)
ß (MISC-4) Does edu-sig extend to Jython (25/5)
ß (MISC-5) Database for a small network (5/3)
ß (MISC-6) On and off-topic [was elegant copy-by-value]
(11/5)

ß (MISC-7) On-topic: LinuxFormat magazine (6/3)

Unknown
(20)

ß (UNK-1) Getting it going (17/13)
ß (UNK-2) New game in town (6/3)
ß (UNK-3) (no subject) (8/6)
ß (UNK-4) On the front page (14/5)
ß (UNK-5) Articles of possible interest (31/14)
ß (UNK-6) My opinion (5/4)
ß (UNK-7) Things to come (18/7)
ß (UNK-8) Around again (5/3)
ß (UNK-9) Now I went and did it (38/13)
ß (UNK-10) A fact on the ground (18/10)
ß (UNK-11) Active essays (5/3)
ß (UNK-12) Switching gears (8/4)
ß (UNK-13) And now for something completely different (8/3)
ß (UNK-14) About myself (5/3)
ß (UNK-15) Brainstorming and a neat link (8/5)
ß (UNK-16) Off topic musings (22/10)
ß (UNK-17) Thanks for the tip (5/3)
ß (UNK-18) Which way did the chicken cross the road (7/5)
ß (UNK-19) Slightly OT: O'Reilly article (21/9)
ß (UNK-20) Losing the plot (15/5)

255

APPENDIX B

RESOURCES FOR LEARNING & TEACHING PYTHON

Beginner's Guide to Python
http://www.python.org/topics/learn/

Python Bibliotheca
http://www.ibiblio.org/obp/pyBiblio/
A library of educational materials using Python to teach computer
programming, and a virtual meeting place for teachers and students engaged
in learning and teaching using Python.

How to Think Like a Computer Scientist: Learning with Python
Allen B. Downey, Jeffrey Elkner and Chris Meyers
http://www.ibiblio.org/obp/thinkCS/python/english/
A collaborative translation of the original from Java into Python.

The LiveWires Python Course
http://www.livewires.org.uk/python/
Intends to teach the Python programming language to people who have never
programmed before.

Guido van Robot
http://gvr.sourceforge.net/
Guido van Robot is a minimalistic programming language providing just
enough syntax to help students learn the concepts of sequencing, conditional
branching, looping and procedural abstraction.

Useless Python
http://www.uselesspython.com/
Some Python scripts you can play with on your own. If you make changes to
someone's script, or do something in a different way, you can email the script
along with anything you have to say about it, and it will be added to the
collection.

256

Python Cookbook
http://aspn.activestate.com/ASPN/Cookbook/Python
A collaborative collection of Python coding techniques. Very useful!

Learning to Program
Alan Gauld
http://www.freenetpages.co.uk/hp/alan.gauld/
A tutorial for and anyone who wants to learn the art of programming.

A Mathematical Canvas
Kirby Urner
http://www.4dsolutions.net/ocn/
An excellent site for using computing in the Mathematics classroom.

Handbook of the Physics Computing Course
Michael Williams
http://users.ox.ac.uk/~sann1276/python/handbook/
It assumes no programming experience, although it does assume you are
familiar with some high school level math (sine and cosine). It's a self-
contained course with exercises included.

10 Python Pitfalls
Hans Nowak
http://zephyrfalcon.org/labs/python_pitfalls.html
A guideline to those who are new to Python. It documents language features
that often confuse newcomers, and sometimes experienced programmers.

Python Quick Reference
Richard Gruet
http://rgruet.free.fr/

Python Eggs
http://www.python-eggs.org/links.html

Dive into Python
http://diveintopython.org/toc/index.html

Non-Programmers Tutorial For Python
Josh Cogliati
http://honors.montana.edu/~jjc/easytut/easytut/
A tutorial designed to be a introduction to the Python programming
language. This guide is for someone with no programming experience.

257

PythonCard
http://pythoncard.sourceforge.net/
PythonCard is a GUI construction kit for building cross-platform desktop
applications on Windows, Mac OS X, and Linux, using the Python language.

Thinking in Python
http://www.mindview.net/Books/TIPython

O’Reilly Python Center
http://python.oreilly.com/

Pygame
http://pygame.org
Pygame is a set of Python modules designed for writing games.

ScientificPython
http://starship.python.net/~hinsen/ScientificPython/
ScientificPython is a collection of Python modules that are useful for
scientific computing.

Data Structures and Algorithms with Object-Oriented Design
Patterns in Python
Bruno Preiss
http://www.brpreiss.com/books/opus7/
The primary goal of this book is to promote object-oriented design using
Python and to illustrate the use of the emerging object-oriented design
patterns.

Project DUPLEX (Drexel University Programming Learning
EXperience)
http://duplex.mcs.drexel.edu/
Investigates the use of technological advances to enhance the quality and
delivery of large computer programming classes, while reducing costs of
course administration.

258

APPENDIX C

STORIES FROM THE EDU-SIG

The following three stories each illustrate ways of approaching the

question of teaching Python to beginners:

For what it's worth, I gave my 8-year-old son his first taste of Python
with the proven “steal this code” approach. We started with a working
Tkinter script with buttons calling a function that displayed text in a
widget. He already could read and do basic on-screen editing (typing,
copy-and-paste). We didn't discuss concepts like scope and parameter
passing, but just started copying and modifying code. Soon he was
changing the widget colors and printing his own messages to the screen.

I think the lesson is that Piaget was right: make the material conform to
the student's cognitive developmental level. For 8-10 year olds, that
means keeping things concrete and emphasizing the “how” over the
more abstract “why.” You might say they start off more as language
users than programmers (in the same way that I'm a computer user and
not a chip designer). Children at this age are not ready for abstractions,
but they learn well by seeing things work. Treat the program as a
machine, and let the students adjust the input and watch the output
change. The quick code-and-run cycle with Python helps quite a lot in
this regard. –DD, ED-1, 18th

I'll take this as an opportunity to discuss my own limited experience
with teaching Python to new programmers.

I've taken a look at Learning Python and it doesn't seem to have the
right structure if you're completely new to programming. My friend
bought it and hasn't been too much use to her so far, though I expect it
probably will be later on.

259

I'll describe how I explained things to my friend (her 12 year old
daughter was also present during some sessions). Note that she only
just got started and therefore I can't promise this approach will work.
I'll get a chance to teach a number of other people starting next month,
however, so I'll gather more data then.

I described interactive mode first. Since my friend is moderately
familiar with command line environments this did not present too much
of a problem with her. I described the basic idea of some various types;
strings and integers, floats and longs. I didn't expect her to remember it
all right away, but at least it'd give her an idea of what's possible. I also
briefly mentioned lists.

I also introduced variables and assignments in the interactive mode. I
paid special attention to the fact that you can basically use any word (or
number of words) as a variable. I also described some built in functions
such as int(), string() and float(). They are always there and aren't too
difficult to explain, so that was useful.

As I'm not much of an interactive mode user myself (though certainly
it's handy at times), I moved on to describe the editing environment. In
my case it was Emacs, which can be horrendously complicated. The
basics are pretty simple tough, and the python-mode is very nice (syntax
highlighting and easy way to run the code in the editor to see immediate
results). The menus under X helped a lot too.

I showed how you can print stuff, such as the result of expressions. After
that, I introduced boolean expressions (perhaps I should've done so
already in the interactive mode). Then I moved on to 'if' statements, and
block based indentation. All that was still pretty clear.

'for' loops presented more problems, though! I had quite a bit of
difficulty to explain that the for block gets executed for each element in
the sequence, and that the variable (for variable in foolist) refers to
something else each time in the execution. I need to think on a better
way to express things apparently-tricky thing.

I explained how to write a program that adds all numbers from 1 to 9 (or
any sequence of numbers, really), using the 'for' loop, and range(). This
was also pretty difficult to get across. The concept of an extra variable
'sum' that keeps the current sum while doing a loop is not something
people hit on by themselves!

After that I had them change the function to multiply instead of doing
additions (so you'd do factorials). Due to my explanation that you can
use basically any word for a variable, and also focusing on the idea that

260

you should use descriptive variables, my friend and her daughter
automatically started to change variables like 'sum' to 'product', and not
only changed the + to *. This was a rather nice thing to see, though I
hope it wasn't because they taught the computer actually understands
what they call these variables (I don't think they did think that though).
Also tricky was to change the starting value of '0' to '1' (otherwise the
result is '0'), but they both could figure this out for themselves.

I then turned the factorial program they had produced into a function.
In retrospect, I think I should've used the 'sum' program instead to
produce a summing function, as it's probably conceptually easier to talk
about. Like in my explanation of the 'why' of looping (you don't want to
type 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9), I paid attention to the 'laziness'
issue: good programmers are lazy (in the right way), and don't want to
do boring stuff like lots of typing, and they definitely don't want to do
the same thing twice. This seemed to work well.

Still, I had some problems in making clear the concept of functions. I
started too difficultly by using the 'factorial' approach; I fell back to a
very simple function soon enough:

def simple(): pass

I explained the difference between side effect and return value:

return value
def simple1(a): return a
side effect
def simple2(a): print a
both
def simple3(a): print a; return a

This turned out to be fairly tricky at first. The difference between things
like:

print simple1("hoi")

and

simple2("hoi")

was not immediately clear. It got especially tricky when we saw:

print simple2("hoi")

The idea that Python returns 'None' when there is no return statement
came as a confusing surprise; I should probably have introduced 'None'

261

earlier, but it's hard to motivate the existence of 'None' to a newbie,
which is an argument against discussing None too early.

The problem with the approach with 'simple' versus that of 'factorial' is
that 'simple' does demonstrate the mechanism of functions, but not the
why of it. 'factorial' is much more useful here. I still need to figure out
the right way to introduce the motivation for functions along with the
mechanism for functions without causing confusion on either.

What was useful (again in the lazy programming context) was the
concept of 'recipe'. A function does not get executed just by it being
there; it is a recipe which you give to the computer. If you (daughter)
give your mother a cookie recipe that doesn't mean immediately your
mom will go and bake the cookies; you need to ask her to do so first.
Unlike a mom, a computer will always obey (as long as the recipe is
right), unfortunately, a computer is also very stupid so you have to be
more detailed. :)

This analogy seemed to work pretty well.

That's about as far as I got this time. As you see you can spend lots of
time with the basics. This is not because the mechanisms of the basics
are generally hard to understand; they picked those up pretty well in
general, though there were some problems. The problem is more one of
why these mechanisms are useful. What you can do with them, and
how you use them to do useful things. That's the real art of
programming (along with the importance of a well readable and
maintainable program structure). –MF, ED-4, 2nd

Using screen painter tools to design a front end is an old idea that didn't
start with Microsoft, nor is this approach limited to VB. All the so-
called Visual products (Visual C++, Visual FoxPro, and yes, the
emerging Visual Python) are characterized by the floating toolbar
palette of surfaces and controls. But then, so are the Java IDEs from
Borland and Sun. I have nothing against these for what they are. They
can save a lot of time.

I also think we need to get away from the “high level versus low level” to
some degree. Projecting images to a monitor and polling for keyboard
and mouse events is low-level interfacing to the human through the
human's API. We're working to bridge the cell-silicon circuitries with
interfaces of sufficient bandwidth to keep both operating with some
efficiency. The biological is “low level” too, just that it's not a product of

262

conscious engineering and we're not sure how it works exactly. But we
still need to interface with it.

I don't regard using eyeball ports, which are optic-nerve endings of the
brain, as ipso facto “higher level” than talking to a chip through its
various pins. We're dealing with a primitive biological interface devices,
highly suited to their functions (devices I don't see a real need to bypass,
unless they're broken i.e. a lot of this fantasizing about hard-wiring
components directly to the brain, Borg-style, seems a misguided effort to
bypass what billions of years of refinement already give us “for free” --
like trying to drill holes in a Pentium chip in order to bypass its pins
(why??)).

So when it comes to a highly graphical GUI, that's just a way of
encoding frequencies in ways our brains have evolved to interpret, over
the aeons. Electromagnetic radiation in a narrow band of the spectrum
(visible light) is patterned with information that changes at human-
sensible rates (vs. supra or infra-tunable speeds e.g. propeller blades
when spinning at high speed, or glacial movements, are not directly
perceivable, because too fast or too slow respectively -- GUI events need
fit between these extremes, although sometimes a Windows progress
bar will approach the glacial limit).

What we need to be clear about are “walks of life”. Some people have no
slack for learning the intricacies of something that others groove on full
time. We are all “disabled” in one way or another, in the sense that we
lack capabilities, skills, capacities, which others have perfected and take
for granted. In a lot of ways, this is exactly what interfaces are all
about: making allowances for users who do NOT have the time and/or
inclination and/or need and/or ability (for whatever reason) to penetrate
the layers by other means and appreciate what's inside the black box.

I think it's this concealment and encapsulation of functionality that you
are temperamentally disposed to challenge, and I think that's healthy.
People have this natural curiosity to know “how things work” and like to
consult those picture books, exploded diagrams, blueprints, cutaways,
showing the innards, the guts, the “what makes it tick” mechanisms.
Python is a great language for exposing a layer of mechanism handled
by higher level programming languages. Even if you never learn C/C++
or LISP or Assembler (or MMIX), you get a strong dose of what a
programming language is all about, how it feels to use one, how it
mediates between a GUI front end, and internalized logic or routines.
This is fun to find out about, and should be part of the generic K-12
curriculum IMO.

263

You pick up on the idea of an event loop, that's always listening, polling,
waiting for changes, and triggered events, which lead to chains of
programmed responses, perhaps along various threads each with a
namespace, relative priority, and memory allocation. And you learn
what people are talking about when they speak of class hierarchies,
polymorphism and instantiated objects. This is all good general
knowledge to have, even if your walk of life is not programming, not
computer science. Because of your exposure to Python “cave paintings”
which sketch the gist of a web server, or whatever it is, you have a feel
for the role software plays in the world, even if you don't spend a lot of
time writing it yourself. You've acquired a kind of generic numeracy
a.k.a. literacy that'll help you read and understand technical literatures
of various kinds. That's a worthy goal, in and of itself, and is what I aim
for in my 'Numeracy + Computer Literacy' materials.

What I want to see develop from familiarity with Python, is a common
short-hand for exploring various objects. For example, now that this 8th
grader knows some Python, and now that we're studying physics, we
might write something like:

 class Atom:
 def __init__(self,protons,neutrons,electrons):
 self.protons = protons
 self.neutrons = neutrons
 self.fillorbitals(electrons)
 def valence(self):
 ...
 return ion_number

Then you'd have carbon, hydrogen and oxygen objects that instantiated
this template. Compounds could be defined as assemblies of such.

Knowing Python already, kids would see this as a way of capturing
some of the essential qualities of an atom. Furthermore, electrons
might be a list rather than a number, consisting of Electron objects
(same with neutrons and protons), such that we have class composition
going on, with objects inside other objects (not in a class hierarchy
sense, but in an agglomerative/associational sense).

And in a class hierarchy sense, what are Electrons a subclass of? We
could have Fermion and Boson classes, from which our various
subclasses with descend, their inherent differences manifest at this
parent class level).

264

To me, this is more generic OO thinking, taking objects in the real world
and expressing their common traits and behaviors in the form of a class
template, then maybe subclassing to hardwire various attributes.

This kind of thinking about classes and objects should encompass the
GUI widgets as a special case. Screen controls may be treated as a
elements in a class hierarchy (or instantiations thereof), no question
about it, but that's not where to *start* with the idea of objects. That's
just one more example to consider.

To me, the idea of “modeling” really gets interesting to the extent we
free ourselves from just thinking about GUIs in the narrow sense. –KU,
SCI-3, 2nd

265

APPENDIX D

COMPUTER ANXIETY

This thread was in many ways the most interesting one that I came

across during the study. The problems discussed were not really Python-

specific, as you’ll see, but certainly cover similar issues with teachers who

may be asked to use programming in their classes. Also, the students in the

group being referred to are adults rather than adolescents, and attitudes

towards computing may be even more strongly resistant to change. The

mathematical approach that the original poster refers to can be found at

http://www.4dsolutions.net/ocn/. Some messages that strayed from the main

topic have been elided, but the messages retained are intact.46

I don't know whether you remember me, but I have seen your posts
many times in the various math education groups, and it was through
you that I discovered Python. The first time I saw it, I was absolutely
delighted with its potential for helping with math understanding. But
lately I have become disillusioned, because I am constantly finding that
students don't like Python, and I can't at all figure out why. I thought at
first it was because I was teaching students who were very computer
illiterate, but then recently I have had the opportunity to teach a
Discrete Mathematics for Computing distance education class, and

46 http://aspn.activestate.com/ASPN/Mail/Message/1815054

266

again I saw great potential for using Python to make the abstract ideas
more concrete, but again it has fallen flat. Many of these students have
programmed in C++ and Java, so you would think they could learn
enough Python for what I was suggesting in 5 minutes. I don't know
C++ and Java and it only took me a slight bit longer. I have given them
so many opportunities for extra credit projects having to do with it that
they could all have perfect scores for the class if they wanted, but
nobody has taken the bait. But partly this doesn't surprise me, because
these distance education students are very lazy. There are a lot of
people that do DE for a free ride, and the familiar is always more
comforting to such people.

But what really shocked me was the experience I had today with my
colleagues when I tried to show it to them as something with great
potential for help with understanding algebra. I was just showing them
how you could use it as something better than a hand calculator for
doing such things as solving equations by searching, which I think is a
really good idea for keeping students in touch with the base meaning of
solving equations. And one of my colleagues practically expressed horror
and said that this would totally put him off of mathematics. And others
express similar opinions. I remember the first time I saw you write
about how you could define a function in the console mode def f(x):
return x**2, and then proceed to evaluate it on form a composition
function, I immediately thought that was just such a great way for
students to see such things right in front of their eyes, for them to no
longer be abstract. But he seemed to think it would take him hours to
master the syntax of it and for the students it would be just one more
thing to learn when they were already afraid of the subject. And partly
from some of the reactions I have gotten from students, it seems that he
is likely to be right. For him the fact that it there is a : and a return
instead of just an equal sign was totally daunting and the ** makes it
even worse.

So my question for you is have you found this kind of Python anxiety,
and if so how have you dealt with it? –SW

Re your specific questions, I have to confess up front that I have very
limited personal experience trying to phase in Python in the ways I
suggest. I would *like* to have more of these opportunities, but the fact
is that I am not now a classroom teacher (I used to be, but that was
many years ago). When I do get together in a room to present Python or
Python-related topics, chances are they're already sold on the program --
I'm mostly just preaching to the choir as it were.

267

With that confession out of the way, I will attempt to give you some
feedback.

I think you're encountering two different reactions here, when you talk
about (a) trying to teach Python to students who may already have some
C++ or Java experience versus (b) showing off Python's potential utility
as a math-teaching aid to faculty members in a mathematics
department.

In the former case, there's some chauvinism in the various language
communities. C++ and Java both take longer to become productive in
than Python, and are better established in the commercial sector.
Python does enjoy a growing following on many fronts, but it's not
atypical to encounter dismissive attitudes amidst those who've already
made considerable investment in another language. My riposte is that
anyone serious about programming needs to keep an open mind and
appreciation for multiple languages. The idea of a “monolingual
professional programmer” is something of an oxymoron.

More specifically, to C/C++ people I'll point out that Python is open
source, written in C, and extensible in C/C++, so if you have C/C++
skills, you have lots of opportunities in the Python community, which is
inhabited by a great many accomplished and sophisticated C
programmers (Python being a wonderful example of C's capabilities). To
Java people, I'd point out Jython, a version of Python implemented
entirely in Java, and through which one has interactive access to the
complete Java class hierarchy. Serious Java programmers needn't leave
Java behind in order to avail themselves of Jython's power, and should
realize that schools using Python and Jython are not necessarily
competing with the Java community -- on the contrary, they're helping
to train a next generation of Java programmer.

Also in this context, I might direct these skeptics to Bruce Eckel's web
site: http://www.mindview.net/. Here's an excerpt from an interview at
this site, which you might find interesting, given your own experience
with distance education:

One of the things I'm working on now is a distance-learning
program for people who want to learn to program using Python. I
think it will be a much faster and more efficient way for people to
come up the learning curve. This is still in the formative stages; as
you might have guessed by now I generally think about something
for awhile before the right approach comes to me.

268

Once you've had success with programming and are comfortable
with objects, then you're ready to tackle a language like C++ or
Java, which is heavier weight and has more arbitrary details for
the programmer to master (or become confused by).

[http://www.mindview.net/Etc/About/InformITRaw_html]

So here's a guy with some very deep and meticulous books on both C++
and Java -- who now advocates Python as his current language of choice.
Again, Python is not just some toy academic language, nor just a
“scripting language” beneath the dignity of serious programmers. It's a
very high level general purpose language, and learning it first can make
Java and C++ a lot more accessible -- as second or third languages.

But with the math teachers, I think the reaction is coming from a
different place. If they're horrified by the colon and the return keyword
in Python, they'll be even more horrified by all the syntactical clutter of
any computer language -- even Mathematica, which has gone a long
way to accommodate traditional math notation. But as Wolfram points
out, traditional notation is ambiguous. Does s(x-1) mean the function s,
applied to x-1, or does it mean s times x-1? In Mathematica, when a
function is being applied, we use square brackets exclusively, while
curved parentheses serve to indicate the order of operations. Whereas
humans can tolerate a lot of ambiguity, owing to sensitivity to context,
computers cannot. And so in a lot of ways, computers force *more*
precision on a notation.

With math educators, it does no good to talk about Python's power and
sophistication vis-a-vis C++ and Java. Their beef is with the whole idea
of diluting the purity of their discipline with material from an alien
discipline, i.e. computer science and/or engineering. To start using a
computer language in an early math curriculum looks like the harbinger
of nothing good: it means math will become mixed up with all kinds
incompatible grammars which come and go, vs. the staying power of a
more stable, core notation. Plus if computer languages invade the math
classroom, then teachers will be forced to learn programming, which
many are loathe to take up. The hand held graphing calculator is as far
into computing technology as these teachers want to go, and even there,
their programmability is often ignored.

But not all math educators are on the same page here. Many recognize
the advantage of having an “executable math notation” vs. one that just
sits there on the printed page, doing nothing (except crying out to be
deciphered). Kenneth Iverson makes this point very clearly when he
writes:

269

It might be argued that mathematical notation (to be referred to as
MN) is adequate as it is, and could not benefit from the infusion of
ideas from programming languages. However, MN suffers an
important defect: it is not executable on a computer, and cannot be
used for rapid and accurate exploration of mathematical notions.

Kenneth E. Iverson, Computers and Mathematical Notation,
available from jsoftware.com

It's this ability of computer languages to promote the “rapid and
accurate exploration of mathematical notions” which some of us find
exciting and empowering (and if you want to impress math teachers
with a wholly alien notation, which nevertheless expresses a lot of the
same ideas (sometimes as generally and formally as any traditional
notation), have them look at APL or J).

Furthermore, one might argue that imparting numeracy is *not* limited
to teaching just those topics and notations most traditionally favored
within mathematics. It's about imparting some familiarity and
comprehension around *whatever* happen to be the culture's primary
symbolic notations (music notation included) beyond those which we
group under the heading of literacy.

We need to provide some exposure to computer languages because our
industrial society is completely dependent upon them, because they've
become ubiquitous.

We have the choice of segregating these topics from mathematics, just
as we've divorced mathematics from the physical sciences. But some
educators in every generation advocate curriculum integration through
cross-pollination, and to such educators, it makes perfect sense to meld
computer topics with math topics, with science and even humanities
topics (cryptography is a good example of where all of these converge).
In my view, the benefits to be obtained through synergy outweigh the
arguments of turf-protectors who would keep their respective disciplines
“pure”.

That's the kind of overview debate I think is going on here. Then come
the more specific points about the advantages of a computer language
such as Python, versus the calculators, which are already pretty well
established. Python's abilities with big integers are another selling
point. Even though some calculators can work with 100-digit integers,
they have a lot more trouble displaying them (more an argument for a
big screen over a tiny one).

The ability to scroll back through a work session is another advantage.

270

And I think algorithms which involve alphanumeric processing, not just
numeric processing, should get more central treatment, including in
mathematics. For example, it's fine to express permutations using
integers only, but for applications purposes, it's best if we can map 1-27
to the 26 letters and a space. Then you can see how a permutation
results in a scrambling of the alphabet -- back to cryptography again (I
recommend Sarah Flannery's 'In Code' by the way -- she's very clear
about how important Mathematica was to her conceptual development --
which isn't the same as Python of course, but some of the same
synergies apply).

Thanks again for your interesting letter. If you give your permission,
I'll post it, along with my response, to edu-sig, in hopes of generating
more discussion along these lines. Or again, perhaps you'd like to
subscribe and make a fresh start. I think the attitudes you're running
up against are not unique to your experience and it might benefit a lot of
us to take part in more of such discussion. –KU

I while back I wrote to KU about something that happened to me when I
tried to use Python to help with understanding of mathematical
concepts. At that time I didn't have time to participate in this group
when KU suggested it, but he told me he posted what I wrote to the
group.

Basically the discovery that I am making over and over is that students
that have trouble with just the kinds of mathematical topics that I
would have thought some experience with Python would help with, are
even more terrified of computers than they are of mathematics.

It isn't just Python, either, for all the talk about use of computers in the
mathematics classroom as dumbing down, my recent experience is that
students find it harder with computers rather than easier. I had
statistics students who even in a distance education class where they
were supposed to submit their assignments on Excel spreadsheets,
would go so far as to submit something that was in tabular form in a
textbox carefully using the space bar to get things to line up correctly. I
had several others who would type without the = sign almost exactly the
calculations that Excel would have done for them in a cell, and then
repeat the same keystrokes in their calculators, and then type the
answer displayed in the calculator. Most recently I have been teaching a
“Nature of Mathematics” sort of survey course where use of
spreadsheets is even part of the course, and I have a student who will do
exercises from a section specifically about use of spreadsheet, and do the
exercises perfectly, but refuse to actually put them in an Excel sheet,
saying she can't deal with Excel.

271

Anybody have a clue about what is going on with such computer phobics
or what to do about it?

I am ideally very attracted to the ideas that KU has about integrating
mathematics and programming, but my recent experience is suggesting
caution. I am very much interested in your opinions about this. –SW

Some of what you are seeing is the normal reaction to VERY BAD USER
INTERFACES. I.e. they aren't _afraid_, and its not a _phobia_ -- they
just think that the tools stink and are a tremendous waste of time.

They are (or think they are) more productive without the tools you
suggest, and they resent having to learn something when they have a
much better way to do it on their own. It's clearly not laziness, either.
Part of their problem, if they are like the people I have known, is a basic
issue about 'control' and 'flexibility'. They want to do the job their own
way, under their own control, and the system they have is so inflexible
that they have to learn a completely different way to get even the tiniest
of correct results. But the people I am used to dealing with already
know how to get correct results with a calculator or a pen, and they
heartily dislike being re-trained to suit some computer's idea of how the
job should be done. Telling them that after training they would be more
productive is not the issue. Poor or Inflexible user interfaces make them
feel slow, stupid, and _wasting their lives_ -- so they quit in disgust,
resentment, and anger. And I don't blame them. I needed to make a
GANTT chart for a grant proposal yesterday, and after 2 hours with
Microsoft Project, it is back to pen and paper for me as well. I'll
program PyGame to make pretty boxes. :-)

So, for your immediate need, you want something to do statistics
designed by a somebody with a clue about Human Factors. Fortunately,
we have such a beast, Salstat, written in Python by Alan Salmoni who
just got his PhD in Cardiff University in Wales, cc'd on this note.
http://salstat.sunsite.dk/ I hand it to undergraduates who used to be
told to use SAS or SPSS, and they don't pester me with questions about
how to use it. I'd try it and see what happens. If they hate SalStat,
they can send mail to Alan, who is really interested in such bug reports
and _really cares_ about their interactions.

He also knows more about exactly why people have troubles like you
describe than anybody I have ever spoken with, so I hope his account
works. –LC

I think the question you need to ask is 'what makes a calculator easy to
use'. It may simply be that people are trained to use a calculator, long

272

before you meet them. (How old are these students, anyway?) Plenty of
things are called 'intuitive' when all they actually are is 'familiar'. This
makes measuring whether something is actually 'easy to use' v. 'you just
know how to do it' a difficult problem for Human Computer Interaction.

Perhaps your user community is distinctly different from mine, but the
12 year old children in the computer club don't like '**' for power
because they are unfamiliar with that notation. (Some of them are
unfamiliar with the notion of exponentiation as well.) Giving them a
page of 'pen and paper' math problems to solve, where they were asked
to use the ** notation made them familiar with it, which fixed that
problem. The first year, I thought that 8 questions would be sufficient
for familiarity, but that proved not to be the case. Next year I used 20,
and had no trouble. It may be that your students need more hands on
training with computers to become more familiar with loading and using
programs in general, or certain programs in particular. –LC

I am trying to discover such basic things as why it is so much easier
to press 2+4= on a calculator than =2+4 in a spreadsheet. Or for
that matter why typing 2+4 at a >>> prompt is so much harder
than pressing 2+4= on a calculator.

An additional element that may contribute to this is the perceived risk
of inadvertent error. In a setting like Excel where a large number of
options appear to be available, you not only need to know how to
accomplish a task, you also need to know how you could mess it up in
ways that aren't obvious (such as a proportional font space in the wrong
place). From the user's perspective the large, unknown (and hence
essentially unlimited) number of possible errors means that if you care
about accuracy you're going to have to check the results using a method
you trust anyway. So why not save the time and aggravation, and use
the trusted method first? –JH

Thank you, this is a very interesting post about an important topic..

Please can you tell us more context and who are your students -- school,
socio-economic background, age, experience etc.

It sounds like they were so poorly educated and ill-prepared. Must have
been terrifying and humiliating for some of them.

When you asked them to use Excel did you ever check if they know how
to use it? Give any live demos/example yourself of what you wanted? Is
access to the software itself an issue? Is it even installed? etc.

273

Was this shock in the first lesson and homework? Had you already
covered some ground successfully? How much variation is there in the
students? How many own their own or have good access to computers in
their homes? Are they in any other classes which use computers? If so
have you discussed with those teachers?

How did you deal with this situation? What do the students themselves
say about their efforts to simulate the expected result?

If you knew then what you know now, how differently would you have
approach this class?

I am very curious about many aspects of the story. –JC

I'm not looking for a statistical package. I am trying to discover
such basic things as why it is so much easier to press 2+4= on
a calculator than =2+4 in a spreadsheet. Or for that matter
why typing 2+4 at a >>> prompt is so much harder than
pressing 2+4= on a calculator. My experience was that
students were even more violently against Python than they
were against Excel. The ** drives for powers scares them even
more than the ^ does.

I think the question you need to ask is 'what makes a calculator
easy to use'. It may simply be that people are trained to use a
calculator, long before you meet them. [...]

Probably, but even if you've never used a calculator, *learning* to use a
calculator is a lot easier than learning to use a computer. The reason is
simple: affordabilities. A basic calculator (I'm not talking about those TI
models) has a small number of buttons, each with a single function
clearly labeled. “+” means plus, and so on. Compare that to a computer:
the keyboard has over 100 keys, there's a mouse, there are buttons on
the screen, etc., etc. Between all that, ** for power seems a minor issue
(and easily solved, as Laura showed). –GvR

I hate to admit it, but I used to do first-tier telephone tech support. :-)

One of the things I found really interesting was the degree to which
things that I as a frequent computer user take *completely* for granted
would be serious obstacles for new users. Particularly older users who
were trying to use a computer for the first time.

To give you an idea of what I'm talking about, find a computer running
an unfamiliar operating system and window environment (e.g. if you're
a Microsoft Windows user, use Mac or Linux+X). Now try to do

274

something fairly straightforward, like open a word processor and write a
paragraph of text.

WITHOUT USING THE MOUSE.

First time users frequently do NOT find the “Windows - Icon - Mouse -
Pointer” model completely intuitive. I once spent about a half-hour
trying to explain to a guy over the phone how to *resize a window* so
that he could see something that was “behind” it. Remember also that
there really *isn't* anything behind the windows on your screen, and
the idea of the window environment as a bunch of layered images is a
carefully preserved fiction of the interface. And if you don't buy into
that fiction, the screen will be severely confusing.

And this is one of many, many “intuitive” elements of working with GUI
environments that new users may not find intuitive at all.

As for the relevance to topic, what I'm saying is that you are taking for
granted that “typing =2+4 in Excel” and “typing 2+4= in a calculator”
are very similar experiences. They are for you and me, but this is partly
because we have a large body of shared knowledge which we don't even
acknowledge, because it's “intuitive”.

There's another factor, too. And this may be even more relevant to your
case: FEEDBACK. Conceptually, both spreadsheets and programming
languages record a formula for later use, rather than providing an
immediate response. The time between these two phases can be quite
short, but it is there. And a person who types “2+4=” on a calculator
never actually sees the formula “2+4=”, but only experiences it by feel.
So seeing it written out on the screen as they work, instead of
immediate feedback, may seem odd.

I have to admit that I find calculation by hand to sometimes feel more
natural, too. One of the things about Python that I really liked was the
interactive command line which allows me to have *nearly* this
experience on the computer, while conceiving of a program or just doing
calculations. When I realized that the functionality of “calc” was
basically a complete subset of the functionality of python -- I realized I
should just stop using calc and use python instead. After all, if I ever
found I needed more than a few calculations, I can always write a few
lines of python code interactively to do the job.

And before I developed any familiarity with spreadsheets in general, I
would do calculations just like that, and then paste over the results to a
word-processor or other program. I eventually did learn to use kspread,

275

but it's not always the easiest way, especially if you're picky about
layout, which I often am. –TH

After reading your e-mail message, I think a better subject would read:
Computer illiteracy.

Basically the discovery that I am making over and over is that
students that have trouble with just the kinds of mathematical
topics that I would have thought some experience with Python
would help with, are even more terrified of computers than they are
of mathematics.

It isn't just Python, either, for all the talk about use of computers in
the mathematics classroom as dumbing down, my recent experience
is that students find it harder with computers rather than easier.

Since 6 weeks, I am a physics student and I have a lot of Calculus. Part
of my Calculus course is an introduction to Maple. I quickly saw that
Maple would really be able to help me a lot, but even for me (being
experienced with Python and computers in general), it is a large barrier
to type some integral from my Calculus textbook into Maple in order to
check whether it gives the same result as I calculated. This is because it
is so new: I am not used to it. At the start, it is hard indeed, because it is
not intuitive. Instead of using Maple to solve the Maple exercises, some
of my co-students used their TI-83 calculator to do so. This illustrates
the same reflex exists at a 'higher' level. I think it is a temporary reflex,
solvable by doing more exercises, and maybe doing a few steps back.

I had statistics students who even in a distance education class
where they were supposed to submit their assignments on Excel
spreadsheets, would go so far as to submit something that was in
tabular form in a textbox carefully using the space bar to get things
to line up correctly. I had several others who would type without
the = sign almost exactly the calculations that Excel would have
done for them in a cell, and then repeat the same keystrokes in
their calculators, and then type the answer displayed in the
calculator.

I don't think this as anything to do with computer hatred or computer
fear. It is simpler than that: it is computer ignorance.

I am ideally very attracted to the ideas that KU has about
integrating mathematics and programming, but my recent
experience is suggesting caution. I am very much interested in your
opinions about this.

276

A problem with using computers and programming in education is that
typically, a lot of differences exist between the students pre-knowledge.
This is especially true in poorer socio-economic areas of society. For
people (for me at least) grown up in the “West”, it is almost unbelievable
that an adult person does not know about computers, but a few years
ago the former Dutch prime minister turned out not to know how to use
the computer mouse. If students who do not have a computer at home,
nor have ever used any, are told to go programming, it is a natural
reaction to have fear for this. It is simply 10 steps too far. –GH

Thank you, this is a very interesting post about an important topic..

Please can you tell us more context and who are your students --
school, socio-economic background, age, experience etc.

They are adults, mainly in their twenties, and in the US military
stationed in Europe. The backgrounds are fairly mixed. As to math
level, they all knew some algebra, but not a lot beyond that.

It sounds like they were so poorly educated and ill-prepared. Must
have been terrifying and humiliating for some of them.

It was not as bad as all that. I think their main problem was lack of
patience.

When you asked them to use Excel did you ever check if they know
how to use it? Give any live demos/example yourself of what you
wanted? Is access to the software itself an issue? Is it even
installed? etc.

Basically they got *everything*, they got what plenty pay big bucks for,
and yet many still acted like it was a punishment.

My first experience specifically with Excel hatred was when I decided to
simply make homework count as more of their grade, because it seemed
like such a waste to make people go through the tedium required to do
statistics all by hand. The students in this class were mainly business
majors who I thought worked with Excel all the time, and already knew
how to use it better than I did, because previous classes had seemed to
want to be able to use it. But as it turned out, this class was
considerably weaker, so then I spend a whole lot of extra time giving
them demonstrations in the computer lab and working with them on
their homework. I also made up templates on everything we did so that
they really could have got away with murder, because most of the time
they didn't even need to type anything in, just cut and paste and change
the numbers. And most of them did do all right with it in the end, and

277

appreciated it. But still all the way through it always seemed like there
was a lot of pulling teeth, and there were two in particular that simply
up and refused to have anything to do with it … I continually offered
them help, but they wouldn't take it.

My next experience was in a distance education class again mainly
business students, like the other class, a class with really far too much
and too advanced material for the level of students where it seemed that
giving them a lot of Excel templates was the only way to make it do-
able. As it turned out these students were actually even less prepared
than they were supposed to be due to inadequate enforcement of pre-
requisites for distance education class, and this was certainly at least
part of the problem. And again, it wasn't a total failure, but the main
thing that surprised me was the timidity that they still had even after
the whole 14 weeks of the class, things like using my templates to check
their calculator work, but presenting the less accurate (due to round-off
error) calculator answer when the answers differed.

Then the next term I got to teach a class that can be used as a pre-
requisite for the statistics class. It is a kind of a substitute for a an
intermediate algebra class, and also one that actually has spreadsheet
use as part of its content. It's also a kind of a kitchen sink class that has
a lot of places where use of a spreadsheet can make the concepts clearer,
and I would have thought more fun. Now this time I was a lot more
aware of the difficulties students have with Excel, so I thought if I
devoted more time to it, it would really help them when they got to
statistics. So I found room to dedicate the whole first week to it, and
gave them a confidence building first assignment, and succeeded with it.
And many people found what I did with Excel in the class very
interesting, and they all succeeded in doing pretty much what I expected
of them with it. But still now as we are nearing the end of the class, I
get a couple of students saying they hate Excel, and not telling me what
they hate about it. And I'm inclined to think, was all the time I spent
posting things using it to explain things from the course a total waste of
time for them?

Was this shock in the first lesson and homework? Had you already
covered some ground successfully? How much variation is there in
the students?

I think I've probably covered these. First assignment shock wouldn't
surprise me. Refusal to write a final exam on a spreadsheet after seeing
solutions to homework on the all term is what really surprises me. 13th
homework assignments using my templates, but with shown work
calculations where the simple insertion of = before the written out work

278

would have computed it, but instead they opted to press all the buttons
a second time on the calculator, that is the kind of thing that surprises
me. And then there were the face to face students who were allowed to
use Excel on my computer to check their work, but none did that made
me think, “Was all my time spent in the computer lab a total waste?”

How many own their own or have good access to computers in their
homes?

They all have computers at home, and also ones at work and in the
computer lab. I think many even work with computers at work, which in
some cases is part of the problem. When they go to class they want to
get away from work. Computers are in many ways becoming a bad word
in our society as a whole. They are nothing but spam, porn, and bad
ergonomics.

I think my shock is not so much that all of the students had problems,
but that there are some who react even more violently against
computers than they do against math.

Are they in any other classes which use computers?

I don't know.

If so have you discussed with those teachers?

No.

How did you deal with this situation?

Mainly I spent a massive amount of my own time both in computer labs,
and online, and in some cases it still wasn't enough. But partly I know
that at least with the DE students, for many the problem is that these
people simply don't belong in DE classes, and our DE program is just
having teething problems that hopefully will eventually get worked out.

What do the students themselves say about their efforts to simulate
the expected result?

The DE students do what bad DE students do about all their other
problems, which is they tell the instructor they are lost, but refuse to
give specifics. They do the same thing as they do about other material
they have trouble, scream that the book is written in Greek, Chinese,
and Swahili the day before the homework is due after having not
participated all week. These are students that as a whole never pestered
me enough, and I am not the only one to have this experience with DE

279

students. Good students can do well in DE, but there are also a lot who
seem to be practically trying to fail.

Most of the f2f students work with me on it, and really did do some nice
things with their homework. But it was just always more of a struggle
than it seemed it should have been.

If you knew then what you know now, how differently would you
have approach this class?

I'm not really sure. I think mainly I am facing that change can't come
too quickly, and also that students need to be more hungry before they
can learn. They need to discover for themselves the need for computers.
Let them complain about pushing the same buttons on the calculator
over and over, and beg to be allowed to use a computer. No, that's just
me feeling bitter and unappreciated. But there is still some truth in it. I
don't know the answer. That's why I wrote about it.

In my present College Algebra class I show them some things on the
computer, but they do everything by hand, and it is going a *lot* better.
I even come up with sequences of calculator keystrokes for things that I
would never use a calculator for, and to me that seems like a waste.
Personally I hate hand held calculators, no record, and they breed
errors. I would far rather make a computation with Excel, Python, or my
Pacific Tech software Graphing Calculator. But they are happier being
given keystroke sequences, and my work is so much less that I finally
have time to write something like this.

I am very curious about many aspects of the story.

But maybe computer use needs to be taught from ground up integrated
with math, like teaching laboratory technique in science. But math is
not thought of that way. It is thought of as a kind of intelligence to have,
a kind of virtuosity where using computers is cheating and unnatural.
Some people still see calculators as cheating, but they have now for the
most part made the running shoes level of cheating when computers are
still at the steroids level. –SW

280

REFERENCES

The American heritage dictionary of the English language. (3rd ed.)(1992).
Boston: Houghton Mifflin.

Aarseth, E. J. (1997). Cybertext: perspectives on ergodic literature.
Baltimore, MD: Johns Hopkins University Press.

Abelson, H., Sussman, G. J., & Sussman, J. (1996). Structure and
interpretation of computer programs (2nd ed.). Cambridge, MA: MIT
Press

Agre, P. (1998). Notes and recommendations, from
http://commons.somewhere.com/rre/1998/RRE.notes.and.recommenda2.html

Alfeld, P. (2000). Eratosthenes of Cyrene, from
http://www.math.utah.edu/~alfeld/Eratosthenes.html

Anderson, B. R. (1991). Imagined communities: reflections on the origin and
spread of nationalism (Rev. and extended, 2nd ed.). London; New York:
Verso.

Apple Computer Inc. (1994). Inside Macintosh. PowerPC Numerics. Reading,
MA: Addison-Wesley Pub. Co.

Barthes, R. (1993). Mythologies (A. Lavers, Trans.). London: Vintage.

Bayman, P., & Mayer, R. (1988). Using conceptual models to teach BASIC
computer programming. Journal of Educational Psychology, 80(3), 291-
298.

Bereiter, C., & Scardamalia, M. (1996). Rethinking learning. In D. R. Olson &
N. Torrance (Eds.), The handbook of education and human development:
New models of learning, teaching and schooling (pp. 485-513).
Cambridge, MA: Basil Blackwell.

281

Berger, C., & Jones, T. (1995). Analyzing sequence files of instructional
events using multiple representations, from
http://www-personal.umich.edu/~cberger/aera95bjfolder/aera95bj.html

Boyarin, J. (1993). The Ethnography of reading. Berkeley: University of
California Press.

Brooks, F. P. (1975). The mythical man-month: essays on software
engineering. Reading, MA: Addison-Wesley Pub. Co.

Bruckman, A., & Resnick, M. (1995). The MediaMOO Project:
Constructionism and Professional Community. Convergence, 1(1).

Bruner, J. S. (1986). Actual minds, possible worlds. Cambridge, MA: Harvard
University Press.

Buchanan, R. (1989). Design discourse: history, theory, criticism. In V.
Margolin (Ed.), Design Discourse (pp. 91-109). Chicago: University of
Chicago Press.

Chang, K.-e. (1999). Learning recursion through a collaborative Socratic
dialectic process. The Journal of Computers in Mathematics and Science
Teaching, 18(3), 303-315.

Clark, A. (1997). Being there: putting brain, body, and world together again.
Cambridge, MA: MIT Press.

Clements, D. H. (1999). The future of educational computing research: The
case of computer programming. Information Technology in Childhood
Education, 1999, 147-179.

Committee on Information Technology Literacy. (1999). Being Fluent with
Information Technology. Washington, D.C.: National Academy Press.

Dede, C. (Ed.). (1998). Association for supervision and curriculum
development 1998 yearbook: Learning with technology. Alexandria, VA:
ASCD.

Denning, P. J. (2002). The Invisible future: the seamless integration of
technology into everyday life. New York: McGraw-Hill.

DiSessa, A. A. (2000). Changing minds: computers, learning, and literacy.
Cambridge, MA: MIT Press.

Downey, A., Jeffrey Elkner, Chris Meyers. (2002). How to think like a
computer scientist: learning with python (1st ed.). Wellesley, MA: Green
Tea Press.

282

Dunham, P. H., & Dick, T. P. (1994). Research of graphing calculators. The
Mathematics Teacher, 87(6), 440-445.

Economist, The. (2003). Grokking the infoviz, from
http://www.economist.com/science/tq/displayStory.cfm?story_id=1841120

Egan, K. (2001). Why education is so difficult and contentious. Teachers
College Record, 103(6), 923-941.

Elkner, J. (2000). Using Python in a High School Computer Science Program,
from http://www.python.org/workshops/2000-
01/proceedings/papers/elkner/pyYHS.html

Elkner, J. (2001). Python Bibliotheca, from
http://www.ibiblio.org/obp/pyBiblio/

Elkner, J. (2002). Using Python in a High School Computer Science Program
- Year 2, from http://www.elkner.net/jeff/pyYHS/year02/pyYHS2.html

Figgins, S. (2000). Hackers and trackers: CP4E, from
http://www.oreillynet.com/pub/a/network/2000/01/31/hacktrack/index.html

Gardner, H. (1999). Intelligence reframed: multiple intelligences for the 21st
century. New York, NY: Basic Books.

Gauld, A. (2001). Learn to program using Python: a tutorial for hobbyists,
self-starters, and all who want to learn the art of computer
programming. Reading, MA: Addison-Wesley.

Georgatos, F. (2002). How applicable is Python as first computer language for
teaching programming in a pre-university educational environment,
from a teacher's point of view? Unpublished Master's, University of
Amsterdam, Amsterdam, NL.

Glaser, B. G., & Strauss, A. L. (1967). The discovery of grounded theory;
strategies for qualitative research. Chicago: Aldine Pub. Co.

Goldhaber, M. H. (1997a). The Attention Economy and the Net, from
http://www.firstmonday.dk/issues/issue2_4/goldhaber/index.html

Goldhaber, M. H. (1997b). Attention Shoppers! Wired, 5(12).

Goldsmith, T. E., Johnson, P. J., & Acton, W. H. (1991). Assessing Structural
Knowledge. Journal of Educational Psychology, 83(1), 88-96.

Goodman, F. L. (1995). Practice in theory. Simulation & Gaming, 25(3), 178-
190.

283

Harel, I., Papert, S., & Massachusetts Institute of Technology Epistemology
& Learning Research Group. (1991). Constructionism: Research reports
and essays, 1985-1990. Norwood, N.J.: Ablex Pub. Corp.

Harrell, D. F. (2003). Speaking in Djinni: Media arts and the computational
language of expression, from
http://www.ctheory.net/text_file.asp?pick=388

Herring, S. C. (2001). Computer-mediated discourse. In D. Tannen, D.
Schiffrin, & H. Hamilton (Eds.), Handbook of Discourse Analysis (pp.
612-634). Oxford: Blackwell.

Herring, S. C. (2004). Computer-mediated discourse analysis: An Approach to
Researching Online Behavior. In S. A. Barab, R. Kling & J. H. Gray
(Eds.), Designing virtual communities in the service of learning. New
York: Cambridge University Press, see
http://ella.slis.indiana.edu/~herring/cmda.html

Humphreys, K. (2002). PhraseRate: An HTML Keyphrase Extractor, from
http://infomine.ucr.edu/projects/Keith_Humphrey/PhraseRate/phraserate.pdf

Ingram, A. L. (1988). Instructional design for heuristic-based problem
solving. Educational Communication and Technology Journal, 36(4),
211-230.

Illich, I. (1971). Deschooling society. New York: Harper & Row.

Illich, I. (1973). Tools for conviviality. New York: Harper & Row.

Interlink. (2003). KNOT (Version 4.3). Gilbert, AZ: Interlink Inc.

Iverson, K. E. (1999). Computers and Mathematical Notation, from
http://jsoftware.com/books/help/camn/camn.htm

Kafai, Y. B. (1996). Software by Kids for Kids. Communications of the ACM,
39(4), 38-39.

Kaput, J. J., Noss, R., & Hoyles, C. (2002). Developing new notations for a
learnable mathematics in the computational era. In L. D. English (Ed.),
Handbook of international research in mathematics education (pp. xi,
835 p.). Mahwah, N.J.: Lawrence Erlbaum.
(see http://tango.mth.umassd.edu/downloads/NewNotations.pdf)

Killingsworth, M. J., & Gilbertson, M. K. (1992). Signs, genres, and
communities in technical communication. Amityville, N.Y.: Baywood
Pub. Co.

284

Knuth, D. E. (1992). Literate programming. Stanford, CA: Center for the
Study of Language and Information.

Korf, R. E. (1991). Artificial intelligence as information science. Information
Sciences, 57-58, 131-134.

Koza, J. R., Keane, M. A., & Streeter, M. J. (2003). Evolving inventions.
Scientific American, 288(2), 52-59.

Kozma, R. (2003). Material and Social Affordances of Multiple
Representations for Science Understanding. Learning and Instruction,
13(2), 205-226.

Kupperman, J. P. (2002). Making meaningful experiences through an on-line
character-playing simulation. University of Michigan, Ann Arbor.
Dissertation Abstracts International - A, 63(10), 3524. (University
Microfilms No. AAT 3068908)

Kyriacou, C. (1995). Direct teaching. In C. Desforges (Ed.), An introduction to
teaching (pp. 118-131). Oxford: Basil Blackwell.

Lakoff, G., & Núñez, R. E. (2000). Where mathematics comes from: how the
embodied mind brings mathematics into being. New York: Basic Books.

Langer, S. K. K. (1942). Philosophy in a new key; a study in the symbolism of
reason, rite and art. Cambridge, MA: Harvard University Press.

Lanham, R. A. (1991). A handlist of rhetorical terms (2nd ed.). Berkeley:
University of California Press.

Lanham, R. A. (1993). The electronic word: democracy, technology, and the
arts. Chicago: University of Chicago Press.

Lave, J., & Wenger, E. (1991). Situated learning: legitimate peripheral
participation. Cambridge, England; New York: Cambridge University
Press.

Leavens, G. T. (1998). Programming is writing: why programs must be
carefully evaluated. Mathematics and Computer Education, 32(3), 284-
295.

Lemke, J. (1998). Analyzing Verbal Data: Principles, Methods, and Problems.
In B. J. Fraser & K. G. Tobin (Eds.), Kluwer international handbooks of
education; v. 2. Dordrecht; Boston: Kluwer Academic.

285

Liao, Y.-K. C., & Bright, G. W. (1991). Effects of computer programming on
cognitive outcomes: A meta-analysis. Journal of Educational Computing
Research, 7(3), 251-268.

Linn, M. (1985). The cognitive consequences of programming instruction in
classrooms. Educational Researcher, 14(5), 14-16.

Linn, M. (1987). Ideal and actual outcomes from precollege Pascal
instruction. Journal of Research in Science Teaching, 24(5), 467-490.

MacGregor, K. S. (1988). The Structured Walk-Through. Computing Teacher,
15(9), 7-10.

Maheshwari, P. (1997). Improving the learning environment in first-year
programming: integrating lectures, tutorials, and laboratories. The
Journal of Computers in Mathematics and Science Teaching, 16(1), 111-
131.

Mayer, R. E., Dyck, J. L., & Vilberg, W. (1986). Learning to program and
learning to think: What's the connection? Communications of the ACM,
29(7), 605-610.

McCloud, S. (1999). Understanding comics: the invisible art. New York, NY:
Paradox Press.

McGill, T. J., & Volet, S. E. (1997). A conceptual framework for analyzing
students' knowledge of programming. Journal of Research on
Computing in Education, 29, 276-297.

Miller, J. (1996). Text Graphs, from http://www.umich.edu/~jmillr/tg/

Mitchell, E. (1999). Python 101, from http://www-
106.ibm.com/developerworks/linux/library/l-python101.html

Moglen, E. (1999). Anarchism Triumphant: Free Software and the Death of
Copyright, from
http://emoglen.law.columbia.edu/publications/anarchism.html

Moursund, D. (1999). Project-based learning using information technology.
Eugene, OR: International Society for Technology in Education.

Nadin, M. (1997). The civilization of illiteracy. Dresden: Dresden University
Press.

National Research Council (U.S.) Committee on Information Technology
Literacy. (1999). Being fluent with information technology. Washington,
DC: National Academy Press.

286

Norman, D. A., & Spohrer, J. C. (1996). Learner-centered education.
Communications of the ACM, 39(4), 24-27.

Oliver, R. (1993). Measuring hierarchical levels of programming knowledge.
Journal of Educational Computing Research, 9(3), 299-312.

Olsen, F. (2000). Computer Scientist Says All Students Should Learn to
Think 'Algorithmically', from
http://chronicle.com/free/2000/03/2000032201t.htm

Olson, D. R. (1985). Computers as tools of the intellect. Educational
Researcher, 14(5), 5-8.

Ong, W. J. (1991). Orality and literacy: the technologizing of the word.
London; New York: Routledge.

Osgood, C. E. (1963). An Exploration of Semantic Space. In W. L. Schramm
(Ed.), The science of human communication; new directions and new
findings in communication research (p. 158). New York: Basic Books.

Ousterhous, J. K. (1998). Scripting: Higher Level Programming for the 21st
Century. Computer, 31(3), 23-30.

Paris, S. G., Lipson, M. Y., & Wixson, K. K. (1983). Becoming a strategic
reader. Contemporary Educational Psychology, 8, 293-316.

Pea, R. D. (1986). Language independent conceptual 'bugs' in novice
programming. Journal of Educational Computing Research, 2(1), 25-36.

Pease, T. M. (1989). Papert Describes His Philosophy of Education. Spectrum,
1(1). See http://web.mit.edu/giving/spectrum/

Peirce, C. S. (1958). Values in a universe of chance; selected writings of
Charles S. Peirce. Stanford, CA: Stanford University Press.

Pickering, A. (1995). Cyborg History and the WWII Regime. Perspectives on
Science, 3(1), 1-45.

Porter, J. E. (1992). Audience and rhetoric: an archaeological composition of
the discourse community. Englewood Cliffs, N.J.: Prentice Hall.

Postrel, V. I. (1998). The future and its enemies: the growing conflict over
creativity, enterprise, and progress. New York: Free Press.

Preiss, B. R. (2004). Data Structures and Algorithms with Object-Oriented
Design Patterns in Python. New York: Wiley.

287

Python Business Forum (2003). What is Python?, from http://www.python-in-
business.org/python

Python Software Foundation. (2001). Introducing Python, from
http://www.ibiblio.org/pub/multimedia/video/obp/IntroducingPython.mpg

Reeves, T. C. (1999). A model to guide the integration of the WWW as a
cognitive tool in K-12 education, from
http://it.coe.uga.edu/~treeves/AERA99Web.pdf

Resnick, M. (1996). Beyond the centralized mindset. Journal of the Learning
Sciences, 5(1), 1-22.

Rorty, R. (1989). Contingency, irony, and solidarity. Cambridge ; New York:
Cambridge University Press.

Sayers, D. L. (1948). The lost tools of learning. (paper read at a vacation
course in education.) Oxford, 1947. London: Methuen.

Schrage, M. (2000, August). The Debriefing: John Seely Brown. WIRED, 8.

Schvaneveldt, R. W. (Ed.). (1990). Pathfinder associative networks: Studies in
Knowledge Organization. Norwood, NJ: Ablex Publishing Corporation.

Schwartz, D. (1999). Ghost in the machine: Seymour Papert on how
computers fundamentally change the way kids learn, from
http://www.papert.org/articles/GhostInTheMachine.html

Scott, D. J. (1997). The human dimension of computer-mediated
communications: a case study of preservice teachers' use of a computer
conference. University of Michigan, Ann Arbor. Dissertation Abstracts
International - A, 58(10), 3898. (University Microfilms No. AAT
9811190)

Shannon, C. (2003). Another Breadth-first Approach to CS I using Python. In
Proceedings of the Thirty-Fourth SIGCSE Technical Symposium on
Computer Science Education (pp. 248-251). Reno, Nevada.

Sherin, B. L. (1996). The symbolic basis of physical intuition: A study of two
symbol systems in physics instruction. Unpublished Dissertation,
University of California, Berkeley, CA.

Strauss, C., & Quinn, N. (1997). A cognitive theory of cultural meaning.
Cambridge, MA: Cambridge University Press.

Swade, D. (2000). The difference engine: Charles Babbage and the quest to
build the first computer (1st American ed.). New York: Viking Penguin.

288

Swales, J. (1998). Other floors, other voices: a textography of a small
university building. Mahwah, N.J.: Lawrence Erlbaum Associates.

Taylor, K. A. (1991). An Annotated Bibliography of Current Literature
Dealing with the Effective Teaching of Computer Programming in High
Schools. Unpublished Masters, Indiana University, South Bend.

Trauring, A. (2003). Python: Language of Choice for EAI, from
http://www.eaijournal.com/Article.asp?ArticleID=649&DepartmentID=5

van Rossum, G. (1999). Computer programming for everybody: A scouting
expedition for the programmers of tomorrow, from
http://www.python.org/doc/essays/cp4e.html

von Glasersfeld, E. (1998). Cognition, construction of knowledge, and
teaching. In M. R. Matthews (Ed.), Constructivism in science education:
A philosophical examination (pp. 11-30). Dordrecht: Kluwer Academic
Publishers.

Walberg, H. J., Arian, G. W., Paik, S. J., & Miller, J. (2001). New methods of
content analysis in education, evaluation, and psychology. In M. D. West
(Ed.), Theory, method, and practice in computer content analysis (pp.
143-158). Westport, CT: Ablex Pub.

Webb, N. (1986). Problem solving strategies and group processes in small
groups learning computer programming. American Educational
Research Journal, 23(2), 257.

West, C. (1989). The American evasion of philosophy: a genealogy of
pragmatism. Madison, Wis.: University of Wisconsin Press.

Wolfram, S. (2001). Q & A with Stephen Wolfram about A new kind of
science, from http://www.wolframscience.com/qanda/

Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

Yuen, A. H. K. (2000). Teaching computer programming: A connectionist view
of pedagogical change. Australian Journal of Education, 44(3), 239.

Zelle, J. M. (1999). Python as a First Language, from
http://mcsp.wartburg.edu/zelle/python/python-first.html

	PROMOTING COMPUTER LITERACY THROUGH PROGRAMMING PYTHON
	The Joys of the Craft
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF APPENDICES
	CHAPTER 1 COMPUTER LITERACY
	CHAPTER 2 LEARNING PROGRAMMING
	CHAPTER 3 METHODS AND PROCEDURES
	CHAPTER 4 RESULTS
	CHAPTER 5 CONCLUSION
	APPENDIX A CHOSEN THREAD SUBJECT HEADINGS BY CATEGORY
	APPENDIX B RESOURCES FOR LEARNING & TEACHING PYTHON
	APPENDIX C STORIES FROM THE EDU-SIG
	APPENDIX D COMPUTER ANXIETY
	REFERENCES

