
Rapid Development Using Python

SkipWare is a series of extensions to standard Internet transport protocols that, when
installed on a network device, maximizes link utilization and reliability in a stressed
transmission environment. It has been developed collaboratively between GST and
Comtech: GST provides the software and Comtech provides the hardware. Although
SkipWare is an implementation of SCPS (Space Communication Protocol Standards), a
graphical user interface is required to specify configuration settings that impact overall
system performance. Given that the product forwards IP (Internet) traffic, a web-based
client was the most feasible interface for our customers.

Because the interface requirements were soft and time was short, we approached the
interface with a rapid development mentality centered around constant customer
feedback. A language decision had to be made, and we had the following choices
(primarily due to our experience): C, PHP, Perl, Java, Python. Our selection was based
upon the following criteria:

• We planned to prototype on a remote device and anticipated numerous changes.
We needed a language that was designed with change in mind.

• We wanted to avoid the added step of code compilation in order to minimize the
overhead associated with a change. An interpreted language seemed very
pragmatic.

• We wanted a language with good introspection capability.
• We needed to do lots of string manipulation and file I/O. Whatever language we

chose had to excel in both of these areas.

Disk space was a concern but not a driving force. The hardware provided to us was an
800Mhz processor with 64Mb RAM and a 32Mb root filesystem. Of those
characteristics, the disk space was clearly the most precious. Because of the high clock
speed and availability of RAM, interface performance was not a driving force.

Rapid Development
Our development environment focused on customer interaction. Because time was short,
the traditional approach (formal requirements gathering followed by independent
development and testing) was not practical. We anticipated frequently making changes
on a remote device with a customer representative viewing the interface and providing
instant feedback.

Python allowed us to achieve this environment primarily because it is easy to use
interactively. Prototyping through an interactive interpreter is an effective mechanism for
exploring different approaches to solving a problem. With a customer representative
providing real-time feedback, we needed a language where we could instantly prototype a
function through an interactive interpreter and then copy the working function to the
remote device for approval. Perl did not provide an interactive interpreter that enabled
this behavior.

Compilation
Our rapid development environment meant that changes had to be visible immediately by
both developer and customer representative. Coding sessions would frequently involve
work on a remote device during which time changes would be made and feedback would
be gathered. Use of a compiled language inhibited our ability to prototype on a remote
device because it required maintaining a build environment. In the scenario where we
changed one or two lines of code on the remote device during an interactive feedback
session, we did not want to have to wait for compilation before gathering the next round
of feedback. IDEs were not feasible as a solution to our problem because much of our
development occurred on the remote device.

Introspection
We wanted to dispatch web requests to code in a very direct fashion. An architecture
based upon a central controller that used introspection to determine where to route
requests seemed clean and simple. Because our controller-based architecture was
abstract and generic, we had concerns regarding safety. Python protects the programmer
from buffer overflows and has excellent reflection capabilities that can be explored at
run-time. Both characteristics satisfied our needs for introspection and safety. Moreover,
an inspectable run-time is nearly equivalent to running an application under a debugger
while make changes. This characteristic appealed to us.

String Manipulation and File I/O
All user input arrived in string format. All output was stored in files or returned to the
user in HTML format. Both of these concepts are well supported in Python. Iterating
over the content of a file takes 2 lines of Python. In comparison, Java requires 4 or 5
instantiations followed by 2 or 3 lines to read. Once read into memory, content must be
tokenized before iteration. While iterating, casting is required. The Java approach
exemplifies the importance of selecting the appropriate language for your development
environment – it would not have been a good language choice for the tasks we were to
perform (primarily string and file manipulation). With all of its built in types and
excellent string and file manipulation, Python provided us with the tools we needed to
accomplish our tasks quickly and easily (more on this later).

Narrowing down the language choices was not particularly difficult. C requires
compilation, is easy to exploit via buffer overflows (and thus poses a security risk), and
does not handle strings and file I/O particularly well. PHP was also dismissed because
we were not accessing a database and hence many of the features of the language would
not be used. Java is too bloated, requires compilation, and has horrible file I/O and string
manipulation.

Python survived our language elimination process because it satisfied all of our
requirements. In addition to satisfying our requirements, we gravitated towards Python
due to its modularity and support for objects. This allows structured code growth and
accommodates change over time. We also welcomed the safety (over C) that the
interpreter provides. However, above all else, we selected Python as our language

because it supported rapid development (and our specific requirements) extremely well
and no other language came close in comparison. While other languages fulfilled a
subset of our requirements, no language we considered fulfilled all of the requirements
better than Python.

Development
Our hardware vendor provided a 32Mb solid state device to use as a root filesystem.
With the kernel, operating system, and the SkipWare binaries occupying approximately
16Mb, we had to be crafty in determining our runtime environment. We initially looked
to Boa as a lightweight web server, but were concerned about our ability to scale it down
to fit within 10Mb. We feared that we would end up having to convert our Python code
to C for deployment on the production systems, and none of us looked forward to the
port. None-the-less, the quick progress and huge strides we made as a result of using
Python convinced us to move forward with the language until such time that we were
forced to recode.

We looked to “freeze” as an option to avoid a re-write. Freeze seemed to offer us the
best of both worlds: it allowed us to develop our interface in Python, statically link it
against the interpreter, and produce an executable binary we could load onto the
production hardware. Unfortunately, scope creep forced us to eliminate “freeze” as a
viable option. During the development process, unforeseen requirements were created at
the last minute. In the end, we ended up building an interface well beyond the original
set of requirements. Our architecture supported the unanticipated creep, but class
organization became difficult.

For simplicity, our architecture initially consisted of one module containing several
classes (views). Over time, we found that separating the classes into modules enabled a
plug-able overall architecture. Because it supports import-on-demand and module
reloading through introspection, Python allowed us to change logic within external
modules and have the changes immediately accessible by the central controller. Overall
system architecture became significantly cleaner (and simpler) when we shifted to using
multiple modules. Unfortunately, this meant that “freeze” was no longer a viable option
because we would have to statically link every individual module and that would require
significant disk space.

As described above, we witnessed scope creep during development. What started out as a
simple interface to control IP Address, Subnet Mask, Routes, and Round Trip Time
turned into a full fledged dynamic configuration wizard. Moreover, we found ourselves
building an “Auto-Update” feature as well as a management interface that displayed
uptime, traffic statistics, and intelligent displays of routes and acceleration. All this
complex functionality would now have to be ported to another language at the last
minute.

Recognizing the difficulty of a last minute port, we decided to load the Python interpreter
onto the production hardware. This was a difficult and risky decision to make because
we only had 16Mb of free space, and the interpreter consumed a fairly large percentage

of the remaining disk space. However, during the prototyping process, we often
remarked to each other: “this code is not going to port well to language X”. We worried
about the many times we uttered that phrase, and dreaded the upcoming port. The
unknown risks associated with porting to another language compelled us to continue
using Python with the assumption that it would be available on the production hardware.

In retrospect, installing Python turned out to be a wise investment. Even though the
interpreter and libraries consumed over 5Mb of valuable disk resource, the flexibility and
robustness of the language led to numerous speed-ups during development. The string
manipulation and file I/O commands became trivial operations. Instead of wasting time
fighting with the language, we spent time fulfilling customer requirements. Our rapid
development environment blazed to life fueled by Python.

The Pythonic Approach
We found that looking at problems “from a pythonic standpoint” often led to simple and
elegant solutions that addressed both functionality and portability. In on instance we
needed to compare two configuration files for equality. Our first solution was to use the
“diff” command. However, due to time and space limitations, we were unable to load the
“diff” onto the production hardware. We looked to Python and implemented a solution
within 10 minutes: create two dictionaries (one from each file) and compare them using
the != operator. The “pythonic approach” to our problem was pragmatic and very easy to
implement. This trend was common throughout the development process.

With Python available on the production hardware, our capabilities have grown vertically
and horizontally. Our interface continues to evolve through re-factoring, and we have
also written a guardian to perform sanity checks on routes, arp entries, and network
connectivity. It does so by harvesting information from the proc filesystem but also
includes non-proc oriented functionality that prevents software theft. Implementation of
the nanny within another language (presumably C) would require significantly more code
and would also be more difficult to maintain.

Python Evangelism
The appeal of Python goes well beyond its functionality and usability. The user
community and external module support is superb. FTP transfers under Python are
extremely easy via the ftplib module. Simple checksums are painless via the p2 module.
We have used both of the above libraries within our application and have found them
considerably more intuitive than their Java or C counterparts. After our experience with
both syntax and external libraries, many of us frequently ask why other languages do it
“any other way”.

Python’s built-in types immediately come to mind. File access and iteration is extremely
easy:

for line in open(‘file.txt’).read().split(‘\n’):
for word in line.split():

words[word] = words.get(word, 0) + 1

The above demonstrates iteration over a file followed by iteration of individual words per
line. It concludes by showing how a bucket in a dictionary can be referenced explicitly
via brackets or through a method. Conversion between built-in types is also easy. In this
example, tuples are used to construct a dictionary representing the values in a
configuration file:

for line in open(‘settings.conf’).read().split(‘\n’):

if line.strip() == ‘’: continue
(name, value) = line.split(delimiter)
props[name] = value

The above illustrates how a list can automatically be converted to a tuple. The variables
in the tuple can then be used as inputs to other variables. After executing this code, the
developer will have a dictionary where the key is the name configuration setting and the
bucket contains the value of the configuration setting.

We have also marveled at the simplicity of documenting our Python modules to conform
to pydoc specifications. We were initially apprehensive about embedding our method
documentation below the method signature. This seemed counter-intuitive to us (some of
us came from a Java background), but after doing it a couple of times we became
fanatical about it. Unlike Java (where comments are above the method signature), it is
extremely easy to locate a method within a module because the function signature (what
you are searching for) stands out and is not concealed by documentation above and code
below. Here is an example of a JavaDoc comment and method:

/**
 * Returns true if a equals b, false otherwise
 * /

 public boolean equals(Object a, Object b) {
 if (a instanceof b.getClass()) {
 …
 }

}

If you are a Java developer looking for the “equals” method that returns boolean and
accepts two Objects, you are either going to have to use an IDE or visually scan for the
signature. It will not be easy to find because the one line you are looking for is
surrounded by a significant amount of noise: javadoc above and code below. PyDoc
(below), keeps the noise ratio low by embedding the documentation below the function
declaration:

def equals(a, b):
’’’returns true if a equals b, false otherwise’’’
if type(a) == type(b):

…
Looking for the “equals” method under Python is significantly easier that in Java.

Conclusion
Our interest in Python was spawned from a prototyping standpoint, but we have quickly
adopted it as the language of choice for our management interface as well as for ad-hoc

prototyping of future concepts. Numerous developers have quickly come up to speed
with Python and have expressed pleasant surprise at the simplicity of the language and
how quickly they are able to fulfill functional requirements. Moreover, Python’s robust
with string and file handling (as well as it’s built in types) make it the language of choice
for our user interface. We’re quite excited about the potential that Python has given us
and are happy to be using such a powerful language to solve customer problems.

In the future, Python will be looked upon favorably by both the development staff as well
as the company at large because it as allowed us to respond to customer requests in a fast
paced rapid development environment. The built in types, lack of compilation, interative
interpreter, and usability of Python have made it the language of choice of many, and
have raised the bar of excellence for others when evaluating other languages.

