
1

PyTables : Processing And Analyzing Extremely Large
Amounts Of Data InPython

Francesc Alted∗

falted@imk.es
Mercedes Fernández-Alonso†

fernande@exp.uji.es

March, 11th

Abstract

Processing large amounts of data is a must for people working in such fields of scientific applications
as CFD (Computational Fluid Dynamics), Meteorology, Astronomy, Human Genomic Sequence or High
Energy Physics, to name only a few. Existing relational or object-oriented databases usually are good
solutions for applications in which multiple distributed clients need to access and update a large centrally
managed database (e.g., a financial trading system). However, they are not optimally designed for efficient
read-only database queries to pieces, or even single attributes, of objects, a requirement for processing data
in many scientific fields such as the ones mentioned above.

This paper describes PyTables [1], a Python library that addresses this need, enabling the end user to
manipulate easily scientific data tables and regular homogeneous (such as Numeric [2] arrays) Python data
objects in a persistent, hierarchical structure. The foundation of the underlying hierarchical data organiza-
tion is the excellent HDF5 [3] C library.

1 Motivation

Many scientific applications frequently need to save and read extremely large amounts of data (frequently, this
data is derived from experimental devices). Analyzing the data requires re-reading it many times in order to
select the most appropriate data that reflects the scenario under study. In general, it is not necessary to modify
the gathered data (except perhaps to enlarge the dataset), but simply access it multiple times from multiple
points of entry.

Keeping this in mind, PyTables has been designed to save data in as little space as possible (compression
is supported although it is not enabled by default), and has been optimized to read and write data as fast as
possible. In addition, there is no the 2 GB limit in the library; if your filesystem can support files bigger than
2 GB, then so can PyTables. The data can be hierarchically stored and categorized. PyTables also allows to
the user to append data to already created tables or arrays.

To ensure portability of PyTables files between computers with different architectures, the library has
been designed to handle both big and little endian numbers: in principle, it is possible to save the data on a
big-endian machine and read it (via NFS for example) on a little-endian machine.

Others Python libraries have been developed for related purposes, such as the NetCDF module of Scientific
Python [4] and PyHL, a subpackage of the more generic HL-HDF5 [5] effort. These packages have some
grave limitations, however. Scientific Python is based on the NetCDF [6], which doesn’t support hierarchical
data organization; nor is its supported data types set as rich as HDF5. PyHL is based on HDF5, but its
implementation is lower-level than PyTables and less user-friendly: for example, PyHL requires the user to
program a Python C-module to access the compound types. Another drawback of PyHL is that its core objects
are not "appendable".

∗Freelance Applications Programmer, 12100 Castelló, Spain
†Dept. Ciències Experimentals, Universitat Jaume I, 12080 Castelló, Spain

2 2 Implementation overview

2 Implementation overview

Tables are the core data structures in PyTables and are collections of (inhomogeneous) data objects that are
made persistent on disk. They are appendable insofar as you can add new objects to the collections or new
attributes to existing objects. Besides, they are accessed directly for improved I/O speed.

A table is defined as a collection of records whose values are stored in fixed-length fields. All records have
the same structure and all values in each field have the same data type. The terms "fixed-length" and "strict
data types" seems to be quite a strange requirement for an interpreted language like Python, but they serve
a useful function if the goal is to save very large quantities of data (such as is generated by many scientific
applications, for example) in an efficient manner that reduces demand on CPU time and I/O.

In order to emulate records (C structs in HDF5) in Python, PyTables makes use of an special RecArray
object present in the numarray library [7] with the capability to store a series of records (inhomogeneous
data) in-memory. So, a RecArray buffer is setup to be used as a buffer for the I/O. This improves quite a lot
the I/O and optimizes the access to data fields, as you will see later on. Moreover, PyTables also detect errors
in field assignments as well as type errors.

For example, you can define arbitrary tables in Python simply by declaring a class with the name field and
types information:

class Particle(IsDescription):
ADCcount = Col("Int16", 1, 0) # signed short integer
TDCcount = Col("UInt8", 1, 0) # unsigned byte
grid_i = Col("Int32", 1, 0) # integer
grid_j = Col("Int32", 1, 0) # integer
idnumber = Col("Int64", 1, 0) #signed long long
name = Col("CharType", 16, "") # 16-character String
pressure = Col("Float32", 2, 0) # float (single-precision)
energy = Col("Float64", 1, 0) # double (double-precision)

Simply instantiate the class, fill each object instance with your values, and then save arbitrarily large
collections of these objects in a file for persistent storage. This data can be retrieved and post-processed quite
easily with PyTables or with another HDF5 application.

I/O is buffered for optimal performance. The buffer is dynamically created and its size is computed from
different parameters, such as the record size, the expected number of records in a table and the compression
mode (on or off). The buffers are ordinary Python lists which grow during the process of adding records.
When the buffer size limit is reached it is flushed to the disk. In the same way, when the file is closed, all the
open buffers in memory are flushed.

The underlying HDF5 library writes the data in groups of chunks of a predetermined size to write to disk.
It uses B-trees in memory to map data structures to disk. The more chunks that are allocated for a dataset
the larger the B-tree. Large B-trees take memory and causes file storage overhead as well as more disk I/O
and higher contention for the meta data cache. As a consequence, PyTables must balance between memory
limits (small B-trees, larger chunks) and file storage overhead and time to access to data (big B-trees, smaller
chunks). The parameters used to tune the chunk size are the record size, number of expected records and
compression mode.

The tuning of chunk size and buffer size parameters affects the performance and the amount of memory
consumed. The present tuning in PyTables is based on exhaustive benchmarking experiments on an Intel
architecture. On other architectures, this tuning may vary (although, hopefully, only up to a small extent).

PyTables allows the user to improve the performance of his application in a variety of ways. When
planning to deal with very large data sets, user should carefully read the optimization section in User’s Manual
to learn how to manually set PyTables parameters to boost performance.

The hierarchical model of the underlying HDF5 library allows PyTables to manage tables and arrays in
a tree-like structure. In order to achieve this, an object tree entity is dynamically created imitating the file
structure on disk. The user views the file objects by walking throughout this object tree. Tree metadata nodes
describe what kind of data is stored in the object.

3

3 Usage

This section focuses on how to write and read heterogeneous data to and from PyTables files, as these are the
most commonly-used features.

In order to create a table, we first define a user class that describes a compound data type:

Define a user record to characterize some kind of particle
class Particle(IsDescription):

ADCcount = Col("Int16", 1, 0) # signed short integer
TDCcount = Col("UInt8", 1, 0) # unsigned byte
grid_i = Col("Int32", 1, 0) # integer
grid_j = Col("Int32", 1, 0) # integer
idnumber = Col("Int64", 1, 0) #signed long long
name = Col("CharType", 16, "") # 16-character String
pressure = Col("Float32", 2, 0) # float (single-precision)
energy = Col("Float64", 1, 0) # double (double-precision)

then, we open a file for writing, and create a table for it:

h5file = openFile("example.h5", mode = "w", title ="Test file")
table = h5file.createTable(h5file.root, ’readout’, Particle(), "Readout ex.")

The third parameter is an instance of our user class that will be used to define all the characteristics of the
table on disk.

Now, we can proceed to populate this table with some (synthetic) values:

Get a shortcut to the Row instance in Table object
particle = table.row
Fill the table with 10**6 particles
for i in xrange(10**6):

First, assign the values to the Particle record
particle[’name’] = ’Particle: %6d’ % (i)
particle[’TDCcount’] = i % 256
particle[’ADCcount’] = (i * 256) % (1 << 16)
particle[’grid_i’] = i
particle[’grid_j’] = 10 - i
particle[’pressure’] = float(i*i)
particle[’energy’] = float(particle.pressure ** 4)
particle[’idnumber’] = i * (2 ** 34) # This exceeds long integer range
Insert a new particle record
particle.append()

Flush the table buffers
table.flush()

At this point, one million records are saved to disk. Now we call the method iterrows() to access table
data. It returns an iterator that cycles over all the records in the table. When called from inside a loop, the
iterrows() iterator returns an object that mirrors the rows on disk, whose items and values are the same as the
fields and values in the Table. This makes it very easy to process the data in table:

Read actual data from table. We are interested in collecting pressure values
on entries where TDCcount field is greater than 3 and pressure less than 50.
pressure = [x[’pressure’] for x in table.iterrows()

if x[’TDCcount’] > 3 and 1 < x[’pressure’] < 50]
print "Field pressure elements satisfying the cuts ==>", pressure

This makes the utilization of comprehensive lists very user-friendly, as expressions are compact and mean-
ingful.

For a full detailed explanation on PyTables operation, see the User’s Manual [8].

4 4 Some benchmarks

Package Record length Krows/s MB/s total Krows file size memory used %CPU
write read write read (MB) (MB) write read

cPickle small 23.0 4.3 0.65 0.12 30 2.3 6.0 100 100
cPickle small 22.0 4.3 0.60 0.12 300 24 7.0 100 100
cPickle medium 12.3 2.0 0.68 0.11 30 5.8 6.2 100 100
cPickle medium 8.8 2.0 0.44 0.11 300 61 6.2 100 100

struct small 61 71 1.6 1.9 30 1.0 5.0 100 100
struct small 56 65 1.5 1.8 300 10 5.8 100 100
struct medium 51 52 2.7 2.8 30 1.8 5.8 100 100
struct medium 18 50 1.0 2.7 300 18 6.2 100 100

PyTables small 434 469 6.8 7.3 30 0.49 6.5 100 100
PyTables small (c) 326 435 5.1 6.8 30 0.12 6.5 100 100
PyTables small 663 728 10.4 11.4 300 4.7 7.0 99 100
PyTables medium 194 340 10.6 18.6 30 1.7 7.2 100 100
PyTables medium (c) 142 306 7.8 16.6 30 0.3 7.2 100 100
PyTables medium 274 589 14.8 32.2 300 16.0 9.0 100 100

Table 1: Comparing PyTables performance with cPickle and struct serializer modules in Standard Library. (c) means that
a compression is used.

4 Some benchmarks

In table 1 are some figures obtained while reading and writing to a file with three tables, each table containing
10000 and 100000 records using PyTables. The benchmarks has been conducted using 2 different record
sizes, 16 Bytes and 56 Bytes, using the next column definitions for the Tables:

class Small(IsDescription):
var1 = Col("CharType", 16)
var2 = Col("Int32", 1)
var3 = Col("Float64", 1)

class Medium(IsDescription):
name = Col(’CharType’, 16)
float1 = Col("Float64", 1)
float2 = Col("Float64", 1)
ADCcount = Col("Int32", 1)
grid_i = Col("Int32", 1)
grid_j = Col("Int32", 1)
pressure = Col("Float32",1)
energy = Col("Float64", 1)

As a reference, the same tests have been repeated using the cPickle and struct modules that comes with
Python. For struct and cPickle a Berkeley DB 4.1 recno (record based) database has been used. The tests were
conducted on a platform with a 2 GHz Intel Mobile chip, an IDE disk at 4800 rpm, and 256 MB of RAM and
the results can be seen in table 1.

These figures compares quite well with the serializer modules that comes with Python: PyTables can
write records between 20 and 30 times faster than cPickle and between 3 and 10 times faster than struct; and
retrieves information around 100 times faster than cPickle and between 8 and 10 times faster than struct. Note
that PyTables uses a bit more memory (a factor 2 more or less) than the other modules. This is not grave,
however.

One can see that compression doesn’t hurt a lot of performance (less in reading than writing) in PyTables,
and, if the data is compressible, it can be used for reducing the file size in many situations.

It also worth noting that the resulting PyTables file sizes are even smaller that the struct files when com-
pression is off and from 5 to 10 times smaller if using compression (keep in mind that the sample data used

5

Package Record length Krows/s MB/s total Krows file size memory used %CPU
write read write read (MB) (MB) write read

SQLite (ic) small 3.66 1030 0.18 51.0 300 15.0 5.0 100 100
SQLite (oc) small 3.58 230 0.19 12.4 6000 322.0 5.0 100 25
SQLite (ic) medium 2.90 857 0.27 80.0 300 28.0 5.0 100 100
SQLite (oc) medium 2.90 120 0.30 13.1 3000 314.0 5.0 100 11

PyTables (ic) small 679 797 10.6 12.5 3000 46.0 10.0 98 98
PyTables (oc) small 576 590 9.0 9.2 30000 458.0 11.0 78 76
PyTables (ic) medium 273 589 14.8 32.2 300 16.0 9.0 100 100
PyTables (oc) medium 184 229 10.0 12.5 10000 534.0 17.0 56 40

Table 2: Effect of different record sizes and table lengths in SQLite performance. (ic) means that the test ran in-core
while (oc) means out-of-core.

in the tests is synthetic). The difference with cPickle is still bigger (always favorable to PyTables). This is
because PyTables saves data in binary format, while cPickle serialize the data using a format that consumes
fairly more space.

Bear in mind that this elementary benchmark has been done forin-coreobjects (i.e. with file sizes that fit
easily in the memory of the operating system). This is because, cPickle and struct performance is bounded
by the CPU, and you can expect their performance to not significantly change during out-of-core tests. See
later for a more detailed discussion forout-of-coreworking sets during the comparison against a relational
database.

Finally, let’s end with a comparison with one relational database, SQLite [10]. A series of benchmarks
has been conducted with the same small and medium sizes that were used to obtain the tables before. See at
the results in table 2.

From table 2 there can be extracted some interesting conclusions:

• The read/write speed, both in PyTables and SQLite, is high when the test runs in-core, and it is limited
to the I/O disk speed (10 MB/s for writing and 15 MB/s for reading) for out-of-core tests.

• For small row sizes (in-corecase), more than 800 Krow/s can achieved in PyTables. This is surprising
for an interpreted language like Python.

• SQLite consumes far less memory than PyTables. However, the memory consumption never grows too
high (17 MB for tables of 500 MB of size) in PyTables.

• For the same record definitions, the SQLite file takes more space on disk than PyTables. This is a
direct consequence of how the data is saved (in binary format for PyTables, a string representation for
SQLite).

• When the file size fits in cache memory (i.e. the data isin-core), the SQLite selects over the tables are
between 1.3 and 1.5 times faster than PyTables

• When the file doesn’t fit the cache (>200 MB), SQLite performs at maximum I/O disk speed, but as we
seen before, SQLite needs more space for data representation, so PyTables performs better (between a
factor 2 and 2.5, depending on the record size).

• Finally, note that SQLite performs much worse than PyTables when writing records. Chances are that
I have not chosen the best algorithm in the SQLite benchmark code.

As SQLite is one of the fastest (free) relational databases on the market, one can conclude that PyTables
has no competence (at least among those that I’m aware of!) when it comes to deal (both writing and reading)
with very large amounts of (scientific) data in Python.

6 8 References

5 Unit tests

Unittest [11] is a superb utility to test libraries in a series of the most common (but sometimes also unusual)
user cases, that comes with the Python Standard Library.

PyTables comes with more than 200 orthogonal tests, that ensures a high quality and stability over the
different releases.

6 Conclusions

We have shown that even though Python is an interpreted (and therefore, slow) language, with the adoption
of a buffered I/O, a good selection of underlying C libraries and with the help of some extension types
(Python objects written in C for better performance), it can be feasible to use it to process and analyze very
large amounts of data. This enables the user to mine interactively his data and get an immediate feel for
its characteristics. By combining PyTables with complete Python scientific libraries such as SciPy [9], it
becomes possible to easily develop simple-yet-powerful applications to analyze all sorts of scientific data,
using only open source tools.

7 Availability

The library is freely available under the terms of BSD license in the PyTables home page [1].

8 References

1. PyTables Home Page.http://pytables.sourceforge.net

2. Numerical Python.Adds a fast, compact, multidimensional array language facility to Python.http:
//www.pfdubois.com/numpy/

3. What is HDF5?.Concise description about HDF5 capabilities and its differences from earlier versions
(HDF4). http://hdf.ncsa.uiuc.edu/whatishdf5.html

4. Scientific Python library.http://starship.python.net/~hinsen/ScientificPython/

5. A High Level Interface to the HDF5 File Format.ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/
hl-hdf5/README.html

6. NetCDF FAQ: What is NetCDF?http://www.unidata.ucar.edu/packages/netcdf/faq.
html#whatisit

7. Numarray Python.The next generation of Numerical Python.http://www.pfdubois.com/numpy/

8. PyTables User’s Manual.http://pytables.sourceforge.net/html-doc/usersguide-
html.html

9. SciPy Home Page.http://www.scipy.org

10. An Embeddable SQL Database Engine.http://www.sqlite.org/

11. Unittest Python module documentation.http://www.python.org/doc/current/lib/module-
unittest.html

http://pytables.sourceforge.net
http://www.pfdubois.com/numpy/
http://www.pfdubois.com/numpy/
http://hdf.ncsa.uiuc.edu/whatishdf5.html
http://starship.python.net/~hinsen/ScientificPython/
ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html
ftp://ftp.ncsa.uiuc.edu/HDF/HDF5/contrib/hl-hdf5/README.html
http://www.unidata.ucar.edu/packages/netcdf/faq.html#whatisit
http://www.unidata.ucar.edu/packages/netcdf/faq.html#whatisit
http://www.pfdubois.com/numpy/
http://pytables.sourceforge.net/html-doc/usersguide-html.html
http://pytables.sourceforge.net/html-doc/usersguide-html.html
http://www.scipy.org
http://www.sqlite.org/
http://www.python.org/doc/current/lib/module-unittest.html
http://www.python.org/doc/current/lib/module-unittest.html

	Motivation
	Implementation overview
	Usage
	Some benchmarks
	Unit tests
	Conclusions
	Availability
	References

