

Chaco: A Plotting Package for
Scientists and Engineers

David C. Morrill
Enthought, Inc.

Introduction

With packages such as Mathematica and MatLab, scientists and engineers already have a
variety of high-quality plotting capabilities available to them. However, if you are a
scientist or engineer who is also a Python user, or you are working with a limited budget,
your choices are more limited. Chaco is an open source and freely available plotting
package being developed to address many of the plotting needs of the scientific and
engineering communities.

In many ways Python is a language well suited for scientific and engineering
calculations, especially when used in conjunction with packages like Numeric. Its high-
level syntax and interactive shell, combined with the high-performance and easy to use
array manipulation capabilities provided by Numeric, make Python an attractive vehicle
for scientific number crunching and analysis. Quite often the only thing missing from the
"equation" is a high-quality, easy to use plotting package to express the results visually,
either interactively on a computer screen, or as hard-copy via PDF or PostScript files.

Chaco is a package being developed to fill that void, and to do so in a way that scales
well from simple, ad-hoc plots done from the Python command shell to elaborate plotting
applications. And of course, Chaco is fully buzzword compliant:

• Open source (covered by a BSD style license)
• Works with both the wxPython and Tkinter GUI toolkits
• Cross-platform (courtesy of Python, Numeric, wxPython and Tkinter)
• Supports multiple output types (screen, PDF, PostScript, GIF, PNG, JPEG)

Chaco can be used interactively, either through the Python command shell or as part of a
larger wxPython or Tkinter based application. It can also be used non-interactively, for
example within a CGI request handler from a web server to dynamically generate plot
images for use on web pages.

The Core Plotting Objects

 Plotting is accomplished in Chaco using a small set of core plotting objects:

• PlotValue
• PlotCanvas
• PlotIndexed
• PlotGroup
• PlotAxis
• PlotTitle
• PlotLabel

For interactive use there is also an additional PlotWindow object that binds a collection
of plotting objects to a particular GUI toolkit and display window.

Plots are created by composing plot objects in various ways. For example, perhaps the
simplest possible plot is constructed using:

Pl ot Val ue([2, 5])

which creates a line plot of the two values (0,2) and (1,5) (the omitted x-values, 0 and 1,
are automatically created by the PlotValue object). The following is an illustration of
what this plot looks like using wxPython:

 More complex plots are constructed by composing the core Chaco plotting objects in
different ways. In the following sections we will give a quick tour of the high-level

features and characteristics of each of the core classes, accompanied by some visual
illustrations of them in actual use.

The PlotGroup Class

A PlotGroup object is a container object used to contain and visually layout and
organize other Chaco plotting objects. Any number of the other Chaco plotting objects
can be added to a PlotGroup, including other PlotGroup objects. A PlotGroup has an
or ientation attribute, which can be either horizontal or vertical. Its orientation specifies
the direction in which its contained objects are laid out.

This is illustrated in the following figure:

which shows a collection of three PlotCanvas objects organized using two nested
PlotGroup objects:

Pl ot Gr oup(or i ent at i on = ‘ hor i zont al ’) . add(
 Pl ot Canvas() ,
 Pl ot Gr oup(or i ent at i on = ‘ ver t i cal ’) . add(
 Pl ot Canvas() ,
 Pl ot Canvas()
)
)

The PlotValue Class

A PlotValue object describes a single collection of related data to be plotted. In many
ways, it can be considered to be simply an array of data values. The following is a simple
example of how a PlotValue might be created:

f r om Numer i c i mpor t *
x = ar ange(0, 2 * pi , (2 * pi) / 100)
val ue = Pl ot Val ue(s i n(x))

In this case, the PlotValue object contains the value of sine for all values between 0 an
2*pi over an evenly spaced group of 100 samples.

If used by itself, as in our earlier example, a PlotValue will render itself, along with its
associated axes and grid. However, a PlotValue can also be imbedded in other objects,
such as a PlotCanvas. In this case, a PlotValue object delegates many of its rendering
functions up to its containing object. This will be illustrated in the next section.

The PlotCanvas Class

A PlotCanvas is, as its names suggests, a canvas upon which data is plotted. Like a
PlotGroup, it can contain other Chaco plot objects. Unlike a PlotGroup however, a
PlotCanvas does not lay out its component parts in separate, non-overlapping areas, but
instead manages and organizes them so that they overlap in a meaningful and useful
manner, as shown in the following figure:

which shows a PlotCanvas object containing two separate PlotValue objects, one
containing the values of sine, and the other containing the values of cosine, over the
interval from 0 to 2*pi.

Any number of PlotValues can be added to a single PlotCanvas object. Notice how the
behavior of the PlotCanvas is different from that of a PlotGroup. If the same two
PlotValue objects had been added to a PlotGroup, instead of a PlotCanvas, the result
would have looked like:

The PlotIndexed Class

Another useful class that sits somewhere between the PlotGroup and PlotCanvas
classes in terms of its layout and drawing capabilities is the PlotIndexed class. For the
most part, a PlotIndexed object behaves very much like a PlotGroup object, laying out
its contained objects in either a horizontal or vertical orientation. But unlike a PlotGroup
object, which does not know anything about plotting, a PlotIndexed object understands
plotting, and in fact factors out and coordinates the drawing of common index axes across
all of its contained plottable objects.

What is an index axis? Because Chaco can plot data in any orientation, it would be
awkward to talk in terms of the more standard mathematical x and y axes, since with a
simple property change plots can easily be rotated 90 degrees or have the direction in
which data is plotted be reversed. Instead, Chaco refers to a plot’s index and value axes,

where value describes the set of data being plotted, and corresponds in the normal case to
the y axis, and index describes the set of points at which the data was measured, and
corresponds in the normal case to the x-axis.

So a PlotIndexed object factors out the common set of points at which various sets of
data were measured and coordinates the drawing of all of the plottable objects so that
they share a common index axis, as illustrated below:

Notice how in this case there is a single index (i.e. x) axis drawn along the bottom of the
plot, and that the grid lines span the entire distance from top to bottom of the plotting
area. PlotIndexed objects are very useful in cases where there are several sets of data,
derived from a common set of measurement points, that need to be plotted together, but
which may be too visually cluttered when drawn on a common PlotCanvas object.

The PlotAxis Class

A PlotAxis object describes the visual and layout characteristics of a plot axis. It controls
such characteristics as the minimum and maximum plot bounds, the color and line styles
used for the axis tick marks and grid lines, label formatting and spacing, and so on.

The PlotTitle Class

A PlotTitle object provides a way to add titles to any of the top-level Chaco plotting
objects (i.e. PlotGroup, PlotIndexed, PlotCanvas and PlotValue). Any number of
titles can be added to any of the four sides of any of these objects. The following shows
the result of adding a PlotTitle object to the top of each of the PlotValue objects from
the preceding figure:

The PlotOverlay Class

A PlotOver lay object is similar to a PlotTitle object, but instead of being drawn outside
the plot area, it overlays a section of the plotting area. A PlotOver lay object can either be
positioned relative to the plotting area (e.g. ‘ top left’) or relative to a particular PlotValue
index or data value (or both). This is illustrated in the following figure, which shows
examples of the different types of PlotOver lay objects:

The Chaco Class Hierarchy

So far we have provided a brief overview of most of the high-level Chaco plotting
objects. The following figure illustrates these same classes in terms of their underlying
Python class hierarchy:

Note that there are a number of classes that have not been mentioned so far. Some, like
Plottable and PlotFrame, are base classes which define many of the common visual
characteristics of the Chaco plotting objects we have seen in the preceding figures.

������������	
������
�

	�����
���

�������
����

�����������
����

����������

�����������

����������

������������ ����������

�������� ��

����������

����������
�

�����
�������� �
��

�����
����

!�"���������
����

����#
���$ �

$�%�������#
���$ �

����������

Others classes, like IsContained, NestedContainer , Container and DefaultContainer
help define one of the other key architectural characteristics of Chaco: its
container/delegation model.

The Chaco Container Model

All of the Chaco objects we have talked about so far can be characterized as objects that
can be contained in other objects, or that can contain other objects, or both. The
IsContained class is the base class for any Chaco object that can be contained in another
object. The NestedContainer class is the base class for objects that can contain other
objects. Since NestedContainer is a subclass of IsContained, objects derived from
NestedContainer can both contain, and be contained in, other objects. Any object that
can be contained in another object has an attribute called container that holds the
reference to its container object.

The container model is used for two related, yet distinct, purposes in Chaco:

1. Containment is used to provide a visual hierarchy for Chaco objects. This is
evident in the way that objects contained in PlotGroup, PlotIndexed and
PlotCanvas objects are organized and drawn on the screen for example.

2. An object’s container also provides a source of default values, such as line color,

font, or axis orientation. If a particular object property is not explicitly set for an
object, its value is automatically retrieved from its containing object. If the
containing object does not have an explicit value set, the value is retrieved from
its container, and so on, until a containing object which has an explicit value for
the property is reached.

This second use of containment is referred to as delegation, and is based entirely on the
traits package (refer to the “Traits: A New Way of Adding Properties To Python
Classes” paper for more information on the traits package).

Nearly every Chaco object property (i.e. trait) is defined using the delegation model. That
is, every trait has a value defined either in the object itself, or in one of the container
objects in its containment hierarchy. Note that the delegation chain is always guaranteed
to terminate (that is, reach an object which has an explicit value set for the trait). This is
true because of the DefaultContainer class, which defines explicit default values for
every Chaco object trait.

The default value of each Chaco object’s container trait is an instance of a
DefaultContainer object. When a Chaco object is added to another Chaco container
object, its container trait is modified to refer to its new container object. The topmost
object in a Chaco object hierarchy is normally associated with a PlotWindow object.
Referring to the previous class hierarchy figure, we see that PlotWindow is a subclass of
DefaultContainer . Thus we are guaranteed that the delegation process always terminates
in an instance of DefaultContainer , either the default one, or an instance of
PlotWindow.

The delegation model is very useful because it allows global object defaults to be set on a
top-level Chaco object and be automatically applied to all contained Chaco objects. Yet it
still allows individual traits to be overridden as needed on any particular object. And
because it is a hierarchy, defaults can be established at any level that apply to all
subordinate objects.

The Trait Model

Nearly every characteristic of each Chaco object is defined using the traits package. This
provides two major benefits:

1. It allows object properties to be defined in terms of the powerful containment and
delegation model just described.

2. It provides a flexible, user friendly, yet type safe, method of setting object

properties.

As an example of the flexibility provided by using traits to define object properties,
consider the following example, which shows three different ways that a user can set the
color of a PlotTitle object’s text:

t i t l e = Pl ot Ti t l e(‘ My Pl ot ’)
t i t l e. col or = ' bl ue' # St andar d col or name
t i t l e. col or = 0x0000FF # Hexadeci mal RGB cal ue
t i t l e. col or = (0. , 0. , 1. , 1.) # Fl oat i ng poi nt (R, G, B, Al pha)

Any of these are valid methods of setting the text color to blue. Note however that the
following statement would result in an exception being generated:

t i t l e. col or = ‘ pr et t y i n pi nk’

because the string ‘pretty in pink’ is not recognized as one of the valid values for a Chaco
color.

Trait Editors

Another benefit of using the traits package is the ability to easily generate high-quality,
multi-GUI (wxPython and Tkinter currently) trait editors with very little, or no, effort.

One of the optional features of the Chaco package is the ability to allow the user to
visually select and edit the properties of any Chaco object interactively. The following
figure shows one of the previous examples with one of the PlotValue objects selected:

The next figure shows one page from the trait editor displayed by double-clicking on the
selected object:

Changing any of the trait values in the editor is immediately reflected in the displayed
PlotValue’s on-screen representation.

Note also that the trait editor displays the complete hierarchy of all Chaco objects
contained in the window. New objects can be selected either by clicking on their label in
the hierarchy view or by clicking on the object itself in the plot window. In either case,
the editor notebook on the right side of the dialog immediately reconfigures itself to
display the newly selected object’s traits.

Plot Renderers

Up until now, each of the plots displayed has been a simple line plot of the associated
data. While this is probably the most common type of plot for many scientific and
engineering applications, a plot package that supported only one type of plot would not
be very useful. To that end, Chaco supports an open-ended plotting architecture based on
the notion of plot renderers.

Each PlotValue has a plot_type trait that defines a set of one or more plot renderers that
will be used to render (i.e. draw) the associated PlotValue’s data. The default value of
this trait is ‘ line’ , which specifies the line rendering style we have seen so far in all of the
examples.

However, the following are some examples of other values that could be set:

val ue = Pl ot Val ue(…)
val ue. pl ot _t ype = ‘ scat t er ’ # Scat t er pl ot
val ue. pl ot _t ype = ‘ scat t er , l i ne’ # Bot h scat t er and l i ne
val ue. pl ot _t ype = [‘ scat t er ’ , ‘ l i ne’] # Same t hi ng

Note that more than one type of plot renderer can be specified. Also, new types of plot
renderers can be added to Chaco simply by subclassing the PlotRenderer base class.

Another interesting feature of the plot renderer architecture is that a given PlotRenderer
subclass can plot several related sets of data at the same time. Examples of this type of
plot are stacked bar charts and stock HLOC (high/low/open/close) diagrams, as
illustrated in the following figures:

As mentioned previously, more than one plot renderer can be associated with a
PlotValue, as illustrated in the following figure, which combines the HLOC renderer
shown above with the standard line renderer:

PlotData and PlotSource Objects

As mentioned previously, a PlotValue object can be logically viewed as simply an array
of values to be plotted. While this is a very convenient model in many cases, especially
when working interactively in a Python command shell, it is not always the best model
when working with more structured data, such as the stock high, low, open, close data we
used in the previous example.

Accordingly, Chaco also provides a means of dealing with more structured forms of data
through the use of PlotData and PlotSource objects. A PlotData object is simply a
wrapper around one or more sets of related data. The data contained in the PlotData
object can be connected to a plottable Chaco object by means of a PlotSource object,
which acts as a conduit between a PlotValue and a particular set of data contained within
a PlotData object.

A good example of a PlotData object is the StockQuote class we used in the previous
example. A StockQuote object contains a particular stock’s open, close, high, low and
volume data over a specified range of dates. The data is obtained dynamically over the
Web whenever the StockQuote object’s symbol trait is modified:

sq = St ockQuot e()
sq. symbol = ‘ i nt c ’ # Fet ches new val ues f or symbol ‘ i nt c ’

A StockQuote object also exposes five sources of data: high, low, open, close, and
volume, any of which can be associated with one or more PlotValue objects. PlotData
objects can also be smart about how they add themselves to a plottable object. For
example, the preceding stock quote examples showing the HLOC plots were constructed
using a statement similar to the following:

canvas. add(St ockQuot e(‘ del l ’))

In this case, the StockQuote object automatically connected its high, low, open, close
data sources to the PlotCanvas object and set the plot_type trait of the canvas to
‘HLOC’ to select the correct default plot renderer for its associated data.

We can also explicitly connect a PlotData object source to a particular plottable object
directly, as illustrated in the following figure:

where we have explicitly connected the ‘volume’ source of the StockQuote object to the
bottom PlotCanvas using a statement like:

sq. add(canvas, ‘ vol ume’)

Another example of the usefulness of the PlotData capability of Chaco is shown in the
following figure, which was constructed using an instance of the ArcView PlotData
subclass:

An ArcView object loads GIS data in ArcView format from a data file and provides each
of the polygons it contains as a separate data source. When we execute a statement like
the following:

canvas. add(ar cvi ew_obj ect)

the ArcView object (i.e. arcview_object) adds each of its polygons to the canvas as a
separate PlotValue object and sets the PlotCanvas object’s plot_type trait to ‘polygon’ ,
which is the appropriate plot renderer for this type of data.

The fill colors for this example were set randomly as follows:

f or val ue i n canvas[0] :
 val ue. f i l l _col or = (r andom() , r andom() , r andom() , 1. 0)

Note also that one of the polygons (i.e. PlotValues) on the canvas has been selected in
the figure. Double-clicking the polygon would display its trait editor, allowing the user to
interactively change any of the object’s properties, such as selecting a new fill color.

PlotPanel Objects

Another useful feature of Chaco is its ability to imbed panel’s containing various useful
widgets within a PlotWindow. An example of this is shown in the following figure:

This view was constructed using the following statements:

sq = St ockQuot e(symbol = ‘ i bm’)
gr oup. add(Pl ot Canvas(sq))
gr oup. add(Pl ot Panel (sq))

When added to a PlotCanvas, the StockQuote object binds its open, close, high and low
data sources to PlotValue objects added to the canvas. When added to a PlotPanel, a
trait editor for the StockQuote object’s traits is automatically constructed and imbedded
within the panel.

Furthermore, the resulting Symbol field is live. Typing a new stock symbol into the text
entry field results in a new set of stock values being displayed. It should be further noted
that there is no explicit code in the implementation of the StockQuote class to do this.

This latter point is illustrated in the following example, which shows the code for a
simple Polynomial class for displaying fifth degree polynomials:

cl ass Pol ynomi al (Pl ot Dat a) :

 coef f i c i ent = Tr ai t (0. 0, Tr ai t Range(- 10. 0, 10. 0))

 __t r ai t s__ = {
 ' a' : coef f i c i ent ,
 ' b' : coef f i c i ent ,
 ' c ' : coef f i c i ent ,
 ' d' : coef f i c i ent ,
 ' e' : coef f i c i ent
 }

 def dat a (sel f , sour ce_name) :
 x = ar ange(- 5. 0, 5. 01, 0. 1)
 y = ((sel f . a * (x * * 4)) +
 (sel f . b * (x * * 3)) +
 (sel f . c * (x * * 2)) +
 (sel f . d * x) + sel f . e)
 r et ur n t r anspose(r eshape(concat enat e((x, y)) ,
 (2, l en(x))))

With the exception of a few impor t statements, this is the entire definition of the
Polynomial class. We can now construct a view containing an instance of this class using
code very similar to the preceding example:

pol y = Pol ynomi al ()
gr oup. add(pol y)
gr oup. add(Pl ot Panel (pol y))

This results in a window looking something like the following:

This figure shows the results achieved after adjusting several of the panel sliders, each of
which corresponds to one of the polynomial coefficients. Again, it is interesting to note
that there is no code in the Polynomial class that deals explicitly with changes to the
polynomial coefficients. All of the “magic” occurs under the covers, courtesy of the
traits package.

Kiva

Chaco implements all of its plotting capabilities using kiva, a Display PostScript based
drawing package that supports multiple output types. As a result of this, any composition
of Chaco objects can be rendered to any of the following output formats:

• wxPython or Tkinter based display screen windows
• PDF
• PostScript
• Raster images such as JPEG, PNG or GIF

This flexibility in output formats makes Chaco potentially useful in a wide variety of
applications, including:

• Ad-hoc plots performed from a Python interpreter shell.
• Interactive wxPython or Tkinter based applications requiring plotting

capabilities.
• On-demand production of plot related images by a web server CGI script.
• Compositing of plots with other forms of text and graphics within a PDF or

PostScript based report generator.

Conclusion

Chaco is a fairly young package with a lot of work still remaining to be done. Hopefully
however, this paper has demonstrated that even at this early stage in its development,
Chaco has several architectural and implementation features that will in the future make
it a versatile and useful plotting package for scientists and engineers.

In particular, some of the key features we have demonstrated are:

• A visual containment model that allows composing plot objects in a wide variety
of ways.

• A flexible and user friendly set of object properties based on the traits package.
• A powerful property delegation model based on the visual containment hierarchy,

also implemented using the traits package.
• An open-ended plot rendering architecture that allows new types of plots to be

easily added to the package.
• A useful abstraction model that allows external data sources to be easily defined

and plotted, as demonstrated by the StockQuote and ArcView examples.
• A simple to implement and use architecture for adding interactive control widgets

to a plot, based on the traits package, and illustrated by the StockQuote and
Polynomial examples.

Where To Get The Code

The Chaco package is available as part of the SciPy (Scientific Python) open source
project at www.scipy.org and is covered by a BSD-style license. All of the code
described in this paper is contained in the chaco project in the www.scipy.org CVS
repository.

The CVS repository can be accessed from a command shell using the commands:

> cvs –d: pser ver : anonymous@sci py. or g: / home/ cvsr oot l ogi n
> cvs –d: pser ver : anonymous@sci py. or g: / home/ cvsr oot co
chaco_al l

Note the use of chaco_all as the CVS module name. Checking out this module ensures
that all of the Chaco code and its supporting packages, such as kiva and traits, are copied
from the CVS repository.

The Chaco source code can also be browsed on-line using the ViewCVS facility. There is
also a Chaco page at http://www.scipy.org/site_content/chaco that contains recent
Chaco source tarballs and a Windows installer program.

