
Tamer Fahmy
(Vienna University of Technology, Austria)

Creating Python
Bindings for Large C++

Frameworks

• Time versus feasibility constraints:

• Do it yourself (and suffer)

• Using a wrapper generator and write
some glue code

Possible approaches

• SWIG

• SIP

• Boost.Python (Pyste)

• GCC_XML

Available wrapper
generators

• In/Out parameters

• Mapping of advanced features of C++ into
Python (e.g. operator=)

• Operator and method overloading

• Inheritance, templates, exceptions

• Runtime System available? Use it!
(autocasting)

C++ a hard to wrap
language?

• Chosen approach (why SWIG?)

• How i did it?

• -includeall and fake_headers

• Got the basic types right!

• 70% of the work done

• Using typemaps and glue code!

Pivy - Python binding
for Coin

• libswigpy (SWIG runtime library)

• Bridging to other bindings (PyQt)

• Mixing SWIG and SIP

• Get the Pointer to the C++ object

• Watch out for the ownership!

Pivy - Python binding
for Coin

• Mixing different source languages, ObjC with
C++? (PyObjC bridge)

• unsigned char *? numarray, string, list?

Pivy - Python binding
for Coin

• C++ support improved a lot over last 2
years

• GCC_XML as a core for wrapper
generators to work on?

• Common pointer exchange API standard for
wrapper generators?

Conclusions and
Thoughts

Thank you!

Questions?

