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Poll

1. How many people here have been to
more than two Python conferences?

2. How many have been to two or more
talks of the form:
• “I’ve got a prototype of a Python

implementation that is ten times as fast
as CPython? I hope to finish it soon.”

3. How many have been to ten or more
such talks?



Apologetic groveling

• Experiments are important.
• Doing an experiment is better than doing

nothing.
• Most Python users complain about

performance but do nothing at all.
• Many experimenters have other projects

that are very successful.

• But Pyrex is exciting because it is here and
it works!



High level overview

• Pyrex compiles a Python-like language to C.
• This gives two advantages over Python:

• Easy access to C types
• Closer to C performance than Python

• Gives two advantages over C:
• Easy access to Python types
• Close to Python ease and flexibility

• Created by Greg Ewing



My advice

• You will be a much more proficient
Pyrex programmer if you learn both C
and Python.

• …but you could probably get by with
cargo cult techniques…



Pyrex compared to …

• CXX and Boost.Python
• Pyrex has no explicit C++ support
• But also doesn’t depend on C++ syntax

• SWIG
• Because Pyrex is is Python-specific, by default

Pyrex APIs are very “Pythonic”
• The bridge code runs at C speed, not Python

speed
• SWIG can only bridge, not program itself

• Python2C, Starkiller and other Python
compilers
• Not as mature as Pyrex



On the other hand

• Pyrex has a big flaw compared to most
other wrappers:
• There isn’t yet a tool to convert C headers

to Python.
• You need to re-declare structs, typedefs,

function definitions etc.
• And there’s that C++ issue…



Simple Pyrex function

def hello_world():

print “Hello world”

• As you can see: it uses a quirky syntax
where indentation implies nesting.



Manual compilation

paul:/tmp pprescod$ pyrexc hello_world.pyc

paul:/tmp pprescod$ ls hello_world.*

hello_world.c   hello_world.pyc

paul:/tmp pprescod$ wc hello_world.pyc

       3       5      41 hello_world.pyc

paul:/tmp pprescod$ wc hello_world.c

     183     579    5791 hello_world.c



Using Distutils

from distutils.core import setup

from distutils.extension import Extension

from Pyrex.Distutils import build_ext

import glob, sys

setup(name = ’helloworld',

  ext_modules=[

    Extension("hello_world", ["hello_world.pyx"]),

    ],

  cmdclass = {'build_ext': build_ext}

)



Using Pyximport

paul:/tmp pprescod$ python

Python 2.3 (#1, Sep 13 2003, 00:49:11)

[GCC 3.3 20030304 (Apple Computer, Inc.
build 1495)] on darwin

Type "help", "copyright", "credits" or
"license" for more information.

>>> import pyximport; pyximport.enable()

>>> from hello_world import hello_world

>>> hello_world()

Hello world



Generated code

• Aside from dozens of lines of boilerplate…

static char (__pyx_k1[]) = "Hello world!";
static PyObject
*__pyx_f_11hello_world_hello_world(

PyObject *__pyx_self,
PyObject *__pyx_args,
PyObject *__pyx_kwds) {

static char *__pyx_argnames[] = {0};
if (!PyArg_ParseTupleAndKeywords(__pyx_args,

__pyx_kwds, "", __pyx_argnames))
return 0;

… (continued)



Here is the code to print

  /* "/private/tmp/hello_world.pyx":2 */
  __pyx_1 = PyString_FromString(__pyx_k1);

if (!__pyx_1) {__pyx_filename = __pyx_f[0];
__pyx_lineno = 2; goto __pyx_L1;}

if (__Pyx_PrintItem(__pyx_1) < 0) {__pyx_filename
= __pyx_f[0]; __pyx_lineno = 2; goto __pyx_L1;}

Py_DECREF(__pyx_1); __pyx_1 = 0;
if (__Pyx_PrintNewline() < 0) {__pyx_filename =
__pyx_f[0]; __pyx_lineno = 2; goto __pyx_L1;}



Things to note

• Pyrex handles
• checking error return codes from C

functions
• type conversions
• reference counting

• Bear in mind that this talk will focus
on how Pyrex is different than
Python…but usually it is very similar!



Adding static type checking

def hello_world(char *message):

    print message

• Generated code:
static char *__pyx_argnames[] = {"message",0};
PyArg_ParseTupleAndKeywords(__pyx_args,
__pyx_kwds, "s", __pyx_argnames,
&__pyx_v_message)



cdef functions

• The Pyrex programmer can also generate a
function that has a C calling convention
rather than Python:

cdef extern int strlen(char *c)

def hello_world(message):

print message, get_len(message)

cdef int get_len(char *message):

return strlen(message)



Generated code for get_len

static int __pyx_f_11hello_world_get_len(char
(*__pyx_v_message)) {

  int __pyx_r;

  /* "/private/tmp/hello_world.pyx":7 */

  __pyx_r = strlen(__pyx_v_message);

/* Meaningless boilerplate deleted */

return __pyx_r;

}



Generated code calling get_len
__pyx_1 = PyString_AsString(

__pyx_v_message);

if (PyErr_Occurred()) {

/* error handling stuff deleted */

}

__pyx_2 = PyInt_FromLong( 
__pyx_f_11hello_world_get_len(__pyx_1));



Notes about cdef functions

• In either “regular” or “cdef” Pyrex functions
you can mix and match Python types and
function calls. Very few restrictions.

• “cdef” functions cannot be called directly
from Python.

• Regular Python functions are a pain to call
directly from C (need to convert everything
to PyObjects)

• Calling between regular functions is slower
(standard Python performance problem)



Pyrex variable declarations

• Basically like C, but prefixed with the
word “cdef”

cdef int x, y

cdef float z

cdef char *s



Python objects

• By default, variables are of type
“Python object”, with all of the
dynamicity that implies.

• They can also be explicitly typed as
“object”.

object o

o.foo() + o ** o.bar()



Pyrex does runtime casting

cdef conversions(int x,

object y):

    x, y = y, x

    return x,y

print conversions(1, 2)

print conversions(1, “2”)

# causes TypeError



Pointers

• Similar to C (including pointers to pointers
etc.), except there is no “*” deref operator:
use [0] instead.

cdef double_deref(int **y):

    return y[0][0]

cdef int x # int

x = 5

cdef int *xptr # int ptr

xptr = &x

print double_deref(&xptr)#int ptr ptr



Casts

cdef int x, y
x = 1000
cdef void *xptr
xptr = &x
y = <int>x

print y
print <int>(&y)



Importing types and functions

• Declare a header for Pyrex to include
and re-declare the relevant symbols in
it.

cdef extern from "stdio.h":

ctypedef struct FILE

FILE *fopen(char *filename,
char *mode)



Structures

cdef struct mystruct:

    int a

    float b

• Pyrex is more regular than C: Use “.” for
fields of structs and pointers to structs

cdef mystruct *m

m.a = 5



Other complex types

cdef union u:

char *str

int *x

cdef enum colors:

red = 1

green = 2

blue = 3



Partial structure redeclaration

• Don’t have to re-declare all struct
members: just the ones you care
about.

cdef extern from "stdio.h":

    ctypedef struct FILE:

        int _blksize



Typedefs

• Typedef works basically as in C:
• ctypedef unsigned long ULong
• ctypedef int *IntPtr
• ctypedef int size_t



NULL

• There is a reserved word “NULL”.
• It is not the same as 0 or None.
• 0 is an integer.
• None is an object type
• NULL is for pointer types.



Memory management

• Python objects are reference counted
and garbage collected a la Python

• C types use manual C memory
management

• Pyrex programmers don’t need to
think about refcounts

• Except…if they call Python/C API
functions that steal or lend references.



Exception handling

• Pyrex adds exception handling to C.
• Even “cdef” (C) functions can throw

exceptions.
• If the return type of the function is object,

this works just like Python:
cdef object divide(int x, int y):

    if y==0:

        raise ZeroDivisionError

    else:

        return x/y

print divide(2,0)



This won’t work

• Remember to think about types!
cdef object divide(int x, int y):

    return x/y

print divide(2,0)

• Division by 0 is not an error for C
types!



What about C return types

• But what about when the return type is a C
type?

cdef int divide(int x, int y):

    if y==0:

        raise ZeroDivisionError

    else:

        return x/y

print divide(2,0)

-------------
Generates:
Exception exceptions.ZeroDivisionError in

'divide.divide' ignored

0



Except clause

• Functions can have an “except” clause.
• They declare that a particular return

value indicates that an exception has
occurred.

• Note that returning the value does not
trigger the exception: you raise the
exception as per usual.



Exceptions from C functions

cdef int divide(int x, int y) except -1:

    if y==0:

        raise ZeroDivisionError

    elif y<0:

        raise TypeError, "This function
only  divides positive numbers"

    else:

        return x/y

print divide(2,0)



This also won’t work

cdef extern FILE *fopen(char *filename,
char *mode) except NULL

• Standard C functions don’t throw
Python exceptions (they don’t call
PyErr_SetString)

• Except clauses are only useful for
functions that know about Python.



Conditional exception codes

• Sometimes any number is a valid return
code.

• An “except?” clause tells Pyrex to check
whether an exception was thrown.

cdef int  divide(int x, int y) except? -1:

    if y==0:

        raise ZeroDivisionError

    else:

        return x/y

print divide(-1,1) # works

print divide(2,0) # raises exception



Very conditional error codes

• Pyrex can check whether an exception was
thrown no matter what the return value. (very
inefficient!)

cdef void check_divisible(int x, int y) except *:

    if y==0:

        raise ZeroDivisionError

    print "Divisible! %s/%s" % (x, y)

check_divisible(-1,1) # works

check_divisible(2,0) # raises exception



Integer for-loops

• In order to get around the famous
performance problems with range()
(name lookup etc.), Pyrex has an
integer syntax:

for i from 0 <= i < n:

!!! ...



Extension types

• An extension type is just like a Python
class except that:
 it has a more compact representation

(more compact even than __slots__
instances)

 it can directly contain C types (which
__slots__ instances cannot)

 it is a first-class type in the type system



Defining extension types

cdef class Shrubbery:

cdef int width, height

def __init__(self, w, h):

self.width = w

self.height = h

def describe(self):

print "This shrubbery is", \ 
self.width, \

!!!!!!!!!!! "by", self.height, "cubits."



Using Shrubbery from Python

x = Shrubbery(1, 2)

x.describe()

print x.width

# exception --

# not accessible from Python



Public and readonly attributes

cdef class Shrubbery:

!!! cdef public int width, height

!!! cdef readonly float depth

• These attributes are accessible from Python:
x = Shrubbery(1, 2)

x.describe()

print x.width # works now

x.depth = 5 # throws exception



Properties in Pyrex

cdef class Spam:

property cheese:

"A doc string can go here."

def __get__(self):

# Called when the property is read.

...

def __set__(self, value):

# Called when the property is written.

...

! def __del__(self):

 !!!!!# Called when the property is deleted.



Using extension types

• Extension types can be treated as
simply Python objects, but they also
exist in the Pyrex type system:

def widen_shrubbery(Shrubbery sh,
extra_width):

  !sh.width = sh.width + extra_width



Careful!

• Extension types have __special__
methods just as Python types do, but
they are sometimes subtly different.

• Read the Pyrex docs for more
information.



Pyrex lacks some features

• Function and class definitions cannot
occur in function definitions

• “import *” is banished.
• No generators
• No globals() and locals() functions



Other missing features

• (to be corrected eventually)
• Functions cannot even be nested in

conditionals
• In-place operators (“+= ”, “-= ”) are not

allowed
• No list comprehensions
• No explicit support for Unicode
• New division syntax



Non-technical “features”

• Pyrex needs a more active community.
• It could benefit from more of a shared-load

development model.
 Someone should do C++ support!
 Someone should hack for optimization!
 Somone should integrate with Jython/JNI and

IronPython/CLI
 Someone should port the Python stdlib.
 …and so forth.

• Pyrex needs more marketing.



Discussion

• What is Pyrex’s future?
• Should some of Python core be coded

in Pyrex?
• How will Pyrex relate to other Python

implementations?
• How should the Pyrex community self-

organize?


