
Extending Python with
Pyrex

Poll

1. How many people here have been to
more than two Python conferences?

Poll

1. How many people here have been to
more than two Python conferences?

2. How many have been to two or more
talks of the form:
• “I’ve got a prototype of a Python

implementation that is ten times as fast
as CPython?

Poll

1. How many people here have been to
more than two Python conferences?

2. How many have been to two or more
talks of the form:
• “I’ve got a prototype of a Python

implementation that is ten times as fast
as CPython? I hope to finish it soon.”

3. How many have been to ten or more
such talks?

Apologetic groveling

• Experiments are important.
• Doing an experiment is better than doing

nothing.
• Most Python users complain about

performance but do nothing at all.
• Many experimenters have other projects

that are very successful.

• But Pyrex is exciting because it is here and
it works!

High level overview

• Pyrex compiles a Python-like language to C.
• This gives two advantages over Python:

• Easy access to C types
• Closer to C performance than Python

• Gives two advantages over C:
• Easy access to Python types
• Close to Python ease and flexibility

• Created by Greg Ewing

My advice

• You will be a much more proficient
Pyrex programmer if you learn both C
and Python.

• …but you could probably get by with
cargo cult techniques…

Pyrex compared to …

• CXX and Boost.Python
• Pyrex has no explicit C++ support
• But also doesn’t depend on C++ syntax

• SWIG
• Because Pyrex is is Python-specific, by default

Pyrex APIs are very “Pythonic”
• The bridge code runs at C speed, not Python

speed
• SWIG can only bridge, not program itself

• Python2C, Starkiller and other Python
compilers
• Not as mature as Pyrex

On the other hand

• Pyrex has a big flaw compared to most
other wrappers:
• There isn’t yet a tool to convert C headers

to Python.
• You need to re-declare structs, typedefs,

function definitions etc.
• And there’s that C++ issue…

Simple Pyrex function

def hello_world():

print “Hello world”

• As you can see: it uses a quirky syntax
where indentation implies nesting.

Manual compilation

paul:/tmp pprescod$ pyrexc hello_world.pyc

paul:/tmp pprescod$ ls hello_world.*

hello_world.c hello_world.pyc

paul:/tmp pprescod$ wc hello_world.pyc

 3 5 41 hello_world.pyc

paul:/tmp pprescod$ wc hello_world.c

 183 579 5791 hello_world.c

Using Distutils

from distutils.core import setup

from distutils.extension import Extension

from Pyrex.Distutils import build_ext

import glob, sys

setup(name = ’helloworld',

 ext_modules=[

 Extension("hello_world", ["hello_world.pyx"]),

],

 cmdclass = {'build_ext': build_ext}

)

Using Pyximport

paul:/tmp pprescod$ python

Python 2.3 (#1, Sep 13 2003, 00:49:11)

[GCC 3.3 20030304 (Apple Computer, Inc.
build 1495)] on darwin

Type "help", "copyright", "credits" or
"license" for more information.

>>> import pyximport; pyximport.enable()

>>> from hello_world import hello_world

>>> hello_world()

Hello world

Generated code

• Aside from dozens of lines of boilerplate…

static char (__pyx_k1[]) = "Hello world!";
static PyObject
*__pyx_f_11hello_world_hello_world(

PyObject *__pyx_self,
PyObject *__pyx_args,
PyObject *__pyx_kwds) {

static char *__pyx_argnames[] = {0};
if (!PyArg_ParseTupleAndKeywords(__pyx_args,

__pyx_kwds, "", __pyx_argnames))
return 0;

… (continued)

Here is the code to print

 /* "/private/tmp/hello_world.pyx":2 */
 __pyx_1 = PyString_FromString(__pyx_k1);

if (!__pyx_1) {__pyx_filename = __pyx_f[0];
__pyx_lineno = 2; goto __pyx_L1;}

if (__Pyx_PrintItem(__pyx_1) < 0) {__pyx_filename
= __pyx_f[0]; __pyx_lineno = 2; goto __pyx_L1;}

Py_DECREF(__pyx_1); __pyx_1 = 0;
if (__Pyx_PrintNewline() < 0) {__pyx_filename =
__pyx_f[0]; __pyx_lineno = 2; goto __pyx_L1;}

Things to note

• Pyrex handles
• checking error return codes from C

functions
• type conversions
• reference counting

• Bear in mind that this talk will focus
on how Pyrex is different than
Python…but usually it is very similar!

Adding static type checking

def hello_world(char *message):

 print message

• Generated code:
static char *__pyx_argnames[] = {"message",0};
PyArg_ParseTupleAndKeywords(__pyx_args,
__pyx_kwds, "s", __pyx_argnames,
&__pyx_v_message)

cdef functions

• The Pyrex programmer can also generate a
function that has a C calling convention
rather than Python:

cdef extern int strlen(char *c)

def hello_world(message):

print message, get_len(message)

cdef int get_len(char *message):

return strlen(message)

Generated code for get_len

static int __pyx_f_11hello_world_get_len(char
(*__pyx_v_message)) {

 int __pyx_r;

 /* "/private/tmp/hello_world.pyx":7 */

 __pyx_r = strlen(__pyx_v_message);

/* Meaningless boilerplate deleted */

return __pyx_r;

}

Generated code calling get_len
__pyx_1 = PyString_AsString(

__pyx_v_message);

if (PyErr_Occurred()) {

/* error handling stuff deleted */

}

__pyx_2 = PyInt_FromLong(
__pyx_f_11hello_world_get_len(__pyx_1));

Notes about cdef functions

• In either “regular” or “cdef” Pyrex functions
you can mix and match Python types and
function calls. Very few restrictions.

• “cdef” functions cannot be called directly
from Python.

• Regular Python functions are a pain to call
directly from C (need to convert everything
to PyObjects)

• Calling between regular functions is slower
(standard Python performance problem)

Pyrex variable declarations

• Basically like C, but prefixed with the
word “cdef”

cdef int x, y

cdef float z

cdef char *s

Python objects

• By default, variables are of type
“Python object”, with all of the
dynamicity that implies.

• They can also be explicitly typed as
“object”.

object o

o.foo() + o ** o.bar()

Pyrex does runtime casting

cdef conversions(int x,

object y):

 x, y = y, x

 return x,y

print conversions(1, 2)

print conversions(1, “2”)

causes TypeError

Pointers

• Similar to C (including pointers to pointers
etc.), except there is no “*” deref operator:
use [0] instead.

cdef double_deref(int **y):

 return y[0][0]

cdef int x # int

x = 5

cdef int *xptr # int ptr

xptr = &x

print double_deref(&xptr)#int ptr ptr

Casts

cdef int x, y
x = 1000
cdef void *xptr
xptr = &x
y = <int>x

print y
print <int>(&y)

Importing types and functions

• Declare a header for Pyrex to include
and re-declare the relevant symbols in
it.

cdef extern from "stdio.h":

ctypedef struct FILE

FILE *fopen(char *filename,
char *mode)

Structures

cdef struct mystruct:

 int a

 float b

• Pyrex is more regular than C: Use “.” for
fields of structs and pointers to structs

cdef mystruct *m

m.a = 5

Other complex types

cdef union u:

char *str

int *x

cdef enum colors:

red = 1

green = 2

blue = 3

Partial structure redeclaration

• Don’t have to re-declare all struct
members: just the ones you care
about.

cdef extern from "stdio.h":

 ctypedef struct FILE:

 int _blksize

Typedefs

• Typedef works basically as in C:
• ctypedef unsigned long ULong
• ctypedef int *IntPtr
• ctypedef int size_t

NULL

• There is a reserved word “NULL”.
• It is not the same as 0 or None.
• 0 is an integer.
• None is an object type
• NULL is for pointer types.

Memory management

• Python objects are reference counted
and garbage collected a la Python

• C types use manual C memory
management

• Pyrex programmers don’t need to
think about refcounts

• Except…if they call Python/C API
functions that steal or lend references.

Exception handling

• Pyrex adds exception handling to C.
• Even “cdef” (C) functions can throw

exceptions.
• If the return type of the function is object,

this works just like Python:
cdef object divide(int x, int y):

 if y==0:

 raise ZeroDivisionError

 else:

 return x/y

print divide(2,0)

This won’t work

• Remember to think about types!
cdef object divide(int x, int y):

 return x/y

print divide(2,0)

• Division by 0 is not an error for C
types!

What about C return types

• But what about when the return type is a C
type?

cdef int divide(int x, int y):

 if y==0:

 raise ZeroDivisionError

 else:

 return x/y

print divide(2,0)

Generates:
Exception exceptions.ZeroDivisionError in

'divide.divide' ignored

0

Except clause

• Functions can have an “except” clause.
• They declare that a particular return

value indicates that an exception has
occurred.

• Note that returning the value does not
trigger the exception: you raise the
exception as per usual.

Exceptions from C functions

cdef int divide(int x, int y) except -1:

 if y==0:

 raise ZeroDivisionError

 elif y<0:

 raise TypeError, "This function
only divides positive numbers"

 else:

 return x/y

print divide(2,0)

This also won’t work

cdef extern FILE *fopen(char *filename,
char *mode) except NULL

• Standard C functions don’t throw
Python exceptions (they don’t call
PyErr_SetString)

• Except clauses are only useful for
functions that know about Python.

Conditional exception codes

• Sometimes any number is a valid return
code.

• An “except?” clause tells Pyrex to check
whether an exception was thrown.

cdef int divide(int x, int y) except? -1:

 if y==0:

 raise ZeroDivisionError

 else:

 return x/y

print divide(-1,1) # works

print divide(2,0) # raises exception

Very conditional error codes

• Pyrex can check whether an exception was
thrown no matter what the return value. (very
inefficient!)

cdef void check_divisible(int x, int y) except *:

 if y==0:

 raise ZeroDivisionError

 print "Divisible! %s/%s" % (x, y)

check_divisible(-1,1) # works

check_divisible(2,0) # raises exception

Integer for-loops

• In order to get around the famous
performance problems with range()
(name lookup etc.), Pyrex has an
integer syntax:

for i from 0 <= i < n:

!!! ...

Extension types

• An extension type is just like a Python
class except that:
 it has a more compact representation

(more compact even than __slots__
instances)

 it can directly contain C types (which
__slots__ instances cannot)

 it is a first-class type in the type system

Defining extension types

cdef class Shrubbery:

cdef int width, height

def __init__(self, w, h):

self.width = w

self.height = h

def describe(self):

print "This shrubbery is", \
self.width, \

!!!!!!!!!!! "by", self.height, "cubits."

Using Shrubbery from Python

x = Shrubbery(1, 2)

x.describe()

print x.width

exception --

not accessible from Python

Public and readonly attributes

cdef class Shrubbery:

!!! cdef public int width, height

!!! cdef readonly float depth

• These attributes are accessible from Python:
x = Shrubbery(1, 2)

x.describe()

print x.width # works now

x.depth = 5 # throws exception

Properties in Pyrex

cdef class Spam:

property cheese:

"A doc string can go here."

def __get__(self):

Called when the property is read.

...

def __set__(self, value):

Called when the property is written.

...

! def __del__(self):

 !!!!!# Called when the property is deleted.

Using extension types

• Extension types can be treated as
simply Python objects, but they also
exist in the Pyrex type system:

def widen_shrubbery(Shrubbery sh,
extra_width):

 !sh.width = sh.width + extra_width

Careful!

• Extension types have __special__
methods just as Python types do, but
they are sometimes subtly different.

• Read the Pyrex docs for more
information.

Pyrex lacks some features

• Function and class definitions cannot
occur in function definitions

• “import *” is banished.
• No generators
• No globals() and locals() functions

Other missing features

• (to be corrected eventually)
• Functions cannot even be nested in

conditionals
• In-place operators (“+= ”, “-= ”) are not

allowed
• No list comprehensions
• No explicit support for Unicode
• New division syntax

Non-technical “features”

• Pyrex needs a more active community.
• It could benefit from more of a shared-load

development model.
 Someone should do C++ support!
 Someone should hack for optimization!
 Somone should integrate with Jython/JNI and

IronPython/CLI
 Someone should port the Python stdlib.
 …and so forth.

• Pyrex needs more marketing.

Discussion

• What is Pyrex’s future?
• Should some of Python core be coded

in Pyrex?
• How will Pyrex relate to other Python

implementations?
• How should the Pyrex community self-

organize?

