
Optimizing Python with PyrexOptimizing Python with Pyrex

Pyrex is cool but not magicPyrex is cool but not magic

• Pyrex very seldom makes pure-Python
code faster just through a recompile

• But if you understand how Pyrex works,
you can dramatically improve Python
program performance:
 use static type checking,
 static binding,
 C calling conventions, etc.

Case Study 1: Bisect ModuleCase Study 1: Bisect Module

Bisect moduleBisect module

• Originally coded in Python.

• Recoded in C recently for performance.

• Pure Python version is between 2 and 3 times
slower than C version.

• Recompile as Pyrex improves performance by
only a few percentage points.

http://www.prescod.net/python/pyrexopt/bisect/rxbisect0.pyx

Representative functionRepresentative function

def bisect_left(a, x, lo=0, hi=None):

if hi is None:

 hi = len(a)

 while lo < hi:

 mid = (lo+hi)/2

 if a[mid] < x: lo = mid+1

 else: hi = mid

 return lo

Optimization step 1: Static typesOptimization step 1: Static types

cdef int internal_bisect_left(a, x,
int lo, int hi) except -1:

 cdef int mid

 while lo < hi:

 mid = (lo+hi)/2

 if a[mid] < x: lo = mid + 1

 else: hi = mid

 return lo
http://www.prescod.net/python/pyrexopt/bisect/rxbisect1.pyx

Why are we still slower?Why are we still slower?

• Pyrex calls PyObject_GetItem/SetItem
rather than PySequence_GetItem/SetItem

• You can see the difference just in the type
signatures!

PyObject_GetItem(PyObject *o, PyObject *key);

PySequence_GetItem(PyObject *o, int i);

Optimization step 2: CheatOptimization step 2: Cheat

• Import and use PySequence_GetItem
directly from Python.h

if PySequence_GetItem(a,mid) < x:

lo = mid + 1

else:

hi = mid

• http://www.prescod.net/python/pyrexopt/bisect/rxbisect2.
pyx

Can we automate this?Can we automate this?

• I propose to change Pyrex to have first-
class support for “sequence” types.

• I wrote a patch that does this.

Pyrex with sequence typesPyrex with sequence types

• Now my code looks like this:
cdef int
internal_bisect_left(sequence a, x,
int lo, int hi) except -1:

cdef int mid

 while lo < hi:

 mid = (lo+hi)/2

 if a[mid] < x: lo = mid + 1

 else: hi = mid

 return lo
• http://www.prescod.net/python/pyrexopt/bisect/rxbisect3.

pyx

One more twistOne more twist

• The C bisect module has this code:
if (PyList_Check(list)) {

 if (PyList_Insert(list, index,
item) < 0)

 return NULL;

} else {

 if (PyObject_CallMethod(list,
"insert", "iO", index, item) ==
NULL)

 return NULL;

}

Pyrex can do that too!Pyrex can do that too!

if PyList_Check(a):

PyList_Insert(a, lo, x)

 else:

a.insert(lo, x)

• By the way, note how two lines of Pyrex
equal approximately 6 of C.
• And yet they do all of the same error and

reference checking!

ResultResult

• Even so, Pyrex seems to come out ~25%
slower than C. :(
• But half as many lines of code!
• No decrefs!
• No goto statements!
• Automatic exception propagation!

• Seems like a good trade-off to me!

Case Study 2: FibonnaciCase Study 2: Fibonnaci

A digression on benchmarking

Be carefulBe careful

• As always, you have to be careful
benchmarking and optimizing.

• For instance: GCC compiler flags can
make all of the difference.

• Furthermore, applying them is not always
straightforward.

Fibonacci optimizationsFibonacci optimizations

Opt Level Pyrex Plain C
None 0m25.790s 0m18.180s
-O 0m13.990s 0m13.370s
-O2 0m15.450s 0m9.440s
-O3 0m9.720s 0m5.840s
-03 -fun…* 0m7.430s 0m4.730s

(* -fun… = -funroll-loops)

Case Study 3: Heap QueueCase Study 3: Heap Queue

Heap queueHeap queue

• Similar story to Bisect.

• But even with sequence types added,
Pyrex loses out.

• heapq.c uses some highly optimized
PyList APIs:

#define PyList_GET_ITEM(op, i)
(((PyListObject *)(op))->ob_item[i])

Pyrex can cheat too!Pyrex can cheat too!

cdef extern from "Python.h":

 int PyList_Check(object PyObj)

 int PyList_GET_SIZE(object PyList)

 cdef void *PyList_GET_ITEM(object PyList, int
idx)

…

lastelt = <object>PyList_GET_ITEM(lst, length-1)

http://www.prescod.net/python/pyrexopt/heapq/rxheapq4.pyx

 Why does this work? Why does this work?

• Pyrex compiles to C.

• The C preprocessor will recognize calls to
PyList_GET_ITEM

• Note that you have to be careful about
refcounts!

ResultsResults

• With every cheat I could think of…
 Crushed Python (as much as 6 times faster

depending on the operation)
 Didn’t quite rival C (30-60% slower).
 Maybe somebody smarter than me can find some

optimizations I missed…

• But no code like this:
tmp = PyList_GET_ITEM(heap, childpos);

Py_INCREF(tmp);

Py_DECREF(PyList_GET_ITEM(heap, pos));

PyList_SET_ITEM(heap, pos, tmp);

Case Study 4: Py(e)xpatCase Study 4: Py(e)xpat

Real-world exampleReal-world example

• Years ago I was one of several people to help
wrap Expat in C.

• It wasn’t rocket science but it was a pain.
• There were many niggly details.

 E.g. a couple of 40 line functions to allow stack traces
to propagate from callbacks through Python???

 Ugly macros everywhere
 Careful reference counting
 Plus all of the usual C extension ugliness

• I tried again with Pyrex, yielding pyxpat.

ResultsResults

• The Pyrex version is consistently faster
than the C version, but it may cheat a bit:
 the C version implements some optional

features that the Pyrex version does not.
 in C, the benchmark doesn’t use the features
 in Pyrex, it doesn’t even have the feature.
 that means a few less conditionals and

branches.
 either way, Pyrex is impressively fast!

StatisticsStatistics

• I parsed a file with the following statistics:
 400 MB of data

 5 million elements

 10 million startElement/endElement callbacks
into pure Python code

 it took 3 minutes on my 700MHZ PowerBook.

 this exercise is not I/O bound or Pyrex
couldn’t consistently beat the C API.

One step furtherOne step further

• Pyxpat can explicitly expose a callback interface
that uses Pyrex/C calling conventions rather
than Python?

• Without changing our logic or interface, we can
slash the time in half!

• It turns out that half of Pyexpat’s time is spent on
the Python function call dance.

• And that’s even ignoring type coercion issues.

ConclusionConclusion

Where does Pyrex fit in?Where does Pyrex fit in?

• Pyrex code isn’t quite as fast as hand-coded C.
• Bu you can focus on algorithm rather than

pointers and buffers. (sound familiar?)
• Pyrex code can live on a spectrum

 from “almost as abstract as Python”
 to “almost as efficient as C.”

• The next best thing to the best of both worlds.

What are the obstacles?What are the obstacles?

• You will only get performance out of Pyrex
if you understand implementation details.

• Pyrex should allow programmers to
declare information relevant to the
optimizer.

• Pyrex ought to generate more efficient
code by default.

Optimizing Pyrex itselfOptimizing Pyrex itself

• Pyrex itself is ripe for optimization:
 More knowledge about Python container types
 Better string interning
 Static binding of globals and builtins (yes, Pyrex looks

up len() in __builtins__)
 Bypass PyArg_ParseTuple when there are no

arguments
 PyObject_NEW instead of PyObject)_CallObject

My thoughtsMy thoughts

• Given how easy Pyrex is, I predict that
Python+Pyrex programs will typically go
faster than Python+C programs given the
same amount of programmer effort.

• If you are building a system that needs
some performance…try Pyrex.
• It is probably fast enough for anything

short of a database or network stack.

