


Pyrex s cool but net magic.

Pyrex very seldom makes pure-Python
code faster just through a recompile

But if you understand how Pyrex works,
you can dramatically improve Python
program performance:

= use static type checking,

= static binding,

= C calling conventions, etc.






Bisect moedule

Originally coded in Python.
Recoded in C recently for performance.

Pure Python version is between 2 and 3 times
slower than C version.

Recompile as Pyrex improves performance by
only a few percentage points.

http://www.prescod.net/python/pyrexopt/bisect/rxbisect0.pyx



Representative function

def bisect_left(a, x, 1o=0, hi=None):
if hil i1s None:

hi = len(a)

while 1o < hi:
mid = (lo+hi)/2
if a[lmid] < x: 1o = mid+1
else: hi = mid

return lo



cdef int internal_bisect_left(a, X,
int 1o, 1nt hi) except -1:

cdef int mid

while 1o < hi:
mid = (lo+hi) /2
1if a[mid] < x: 1o
else: hi = md

return lo
http://www.prescod.net/python/pyrexopt/bisect/rxbisect1.pyx

mid + 1



\Why: are we still slower?

Pyrex calls PyObject Getltem/Setltem
rather than PySequence_Getltem/Setltem

You can see the difference just in the type

signatures!
PyObject_GetItem(PyObject *o, PyObject *key);

PySequence_GetItem(PyoObject *o, int 1i);



Optimization step 2: Cheat

Import and use PySequence Getltem
directly from Python.h

if PySequence_GetItem(a,mid) < Xx:
lo=md + 1

else:

hi = mid

http://www.prescod.net/python/pyrexopt/bisect/rxbisect2.
PyX



Can we automate, this?

| propose to change Pyrex to have first-
class support for “sequence” types.

| wrote a patch that does this.



Prex with Sequenceiypes,

Now my code looks like this:

cdef 1int
internal_bisect_left(sequence a, X,
int lo, 1nt hi) except -1:

cdef int mid
while 1o < hi:
mid = (lo+h1)/2
1f a[mid] < x: To =mid + 1
else: hi1 = mid
return lo
http://www.prescod.net/python/pyrexopt/bisect/rxbisect3.




©@ne more. twist

The C bisect module has this code:
if (PyList_Check(list)) {

if (PyList_Insert(list, index,
item) < 0)

return NULL:

1 else {
if (Pyobject_cCallMethod(11ist,
"insert", "i0", index, item) ==
NULL)

return NULL:



Pyrex can do that too!

i

if PyList_Check(a):
PyList_Insert(a, lo, Xx)

else:
a.insert(lo, x)

By the way, note how two lines of Pyrex
equal approximately 6 of C.

And yet they do all of the same error and
reference checking!



Even so, Pyrex seems to come out ~25%
slower than C. :(

But half as many lines of code!
No decrefs!

No goto statements!

Automatic exception propagation!

Seems like a good trade-off to me!



Case Study. 2: Fibennac)

A digression on benchmarking



Be careiul

As always, you have to be careful
benchmarking and optimizing.

For instance: GCC compiler flags can
make all of the difference.

Furthermore, applying them is not always
straightforward.



Eibonacel optimizations

Opt Level |Pyrex Plain C
None Om25.790s Oml8.180s
-0 Oml13.990s Oml3.370s
-02 Oml15.450s 0m9.440s
-03 Om9.720s | Om5.840s
-03 —-fun..* Om7.430s | Om4.730s

(* —fun.. = -funroll-loops)






IHeap queue

Similar story to Bisect.

But even with sequence types added,
Pyrex loses out.

heapq.c uses some highly optimized

PyList APlIs:

#define PyList_GET_ITEM(op, 1)
(((PpyListobject *)(op))->ob_item[i])



Pyrex can cheat too!

cdef extern from "Python.h":
int PyList_Check(object PyObj)
int PyList_GET_SIZE(object PyList)
cdef void *PyList_GET_ITEM(object PyList, int
idx)

lastelt = <object>PyList_GET_ITEM(Ist, length-1)

http://www.prescod.net/python/pyrexopt/heapq/rxheapq4.pyx



VWhy dees, this Work?

Pyrex compiles to C.

The C preprocessor will recognize calls to
PyList_GET_ITEM

Note that you have to be careful about
refcounts!



Results

With every cheat | could think of...

= Crushed Python (as much as 6 times faster
depending on the operation)

= Didn’t quite rival C (30-60% slower).

= Maybe somebody smarter than me can find some
optimizations | missed...

But no code like this:
tmp = PyList_GET_ITEM(heap, childpos);
Py_INCREF(tmp);

Py_DECREF(PyList_GET_ITEM(Cheap, pos));
PyList_SET_ITEMCheap, pos, tmp);






._ Ixeal=woerld example

Years ago | was one of several people to help
wrap Expat in C.

It wasn’t rocket science but it was a pain.

There were many niggly details.

= E.g. a couple of 40 line functions to allow stack traces
to propagate from callbacks through Python???

= Ugly macros everywhere
= Careful reference counting
= Plus all of the usual C extension ugliness

| tried again with Pyrex, yielding pyxpat.



Results

The Pyrex version is consistently faster
than the C version, but it may cheat a bit:

= the C version implements some optional
features that the Pyrex version does not.

= in C, the benchmark doesn’t use the features
= in Pyrex, it doesn’t even have the feature.

= that means a few less conditionals and
branches.

= either way, Pyrex is impressively fast!



Statistics

| parsed a file with the following statistics:
= 400 MB of data
= 5 million elements

= 10 million startElement/endElement callbacks
into pure Python code

= it took 3 minutes on my 700MHZ PowerBook.

= this exercise is not I/O bound or Pyrex
couldn’t consistently beat the C API.



©@ne step further

Pyxpat can explicitly expose a callback interface
that uses Pyrex/C calling conventions rather
than Python?

Without changing our logic or interface, we can
slash the time in half!

It turns out that half of Pyexpat’'s time is spent on
the Python function call dance.

And that’s even ignoring type coercion issues.



Conclusion




._ Where dees Byrex it in?

Pyrex code isn’t quite as fast as hand-coded C.

Bu you can focus on algorithm rather than
pointers and buffers. (sound familiar?)

Pyrex code can live on a spectrum
= from “almost as abstract as Python”
= to “almost as efficient as C.”

The next best thing to the best of both worlds.



\What are the epbstacles?

You will only get performance out of Pyrex
If you understand implementation details.

Pyrex should allow programmers to
declare information relevant to the
optimizer.

Pyrex ought to generate more efficient
code by default.



Optimizing, Pyrex itself

Pyrex itself is ripe for optimization:

= More knowledge about Python container types

= Better string interning

= Static binding of globals and builtins (yes, Pyrex looks
up len() in __ builtins__ )

= Bypass PyArg_ParseTuple when there are no
arguments

= PyObject NEW instead of PyObject) CallObject



IVly. thoughts

Given how easy Pyrex is, | predict that
Python+Pyrex programs will typically go
faster than Python+C programs given the
same amount of programmer effort.

If you are building a system that needs
some performance...try Pyrex.

It is probably fast enough for anything
short of a database or network stack.



