
NLTK: Building a Pedagogical Toolkit in Python

Edward Loper

Department of Computer and Information Science

University of Pennsylvania, Philadelphia, PA 19104-6389, USA

Abstract

Teachers of computational classes are faced with the
challenge of setting up a practical programming com-
ponent for student assignments and projects. One so-
lution is to construct a broad-coverage toolkit, elim-
inating overhead and leaving students free to think
about the subject matter rather than low-level pro-
gramming details. This article discusses the criteria
and requirements that should guide the development
of a programming toolkit for courseware, and explain
how those criteria affected the design and implemen-
tation of the Natural Language Toolkit (NLTK), a
broad-coverage toolkit designed for use as computa-
tional linguistics courseware.

1 Introduction

Computational linguistics is the study of the applica-
tion of computational methods to processing and ana-
lyzing natural language. In an introductory course on
computational linguistics, a practical programming
component provides an important tool for teaching
students about these methods. However, different
computational linguistics domains require a variety of
different data structures and functions, and a diverse
range of topics need to be included in the syllabus.
Furthermore, many of the students come from lin-
guistics backgrounds, and lack strong programming
skills. Therefore, setting up an easy-to-use practical
component can be quite a challenge.

A widespread practice is to employ multiple pro-
gramming languages, where each language provides
native data structures and functions that are a good
fit for the task at hand. For example, a typical course
might use Prolog for parsing; Perl for corpus process-
ing; and a finite-state toolkit for morphological anal-
ysis. This approach allows the teacher to draw on a
wide variety of existing tools, and to avoid developing
a lot of software infrastructure.

But unfortunately, this approach also requires
that a significant portion of the course be devoted

to teaching programming languages instead of com-
putational linguistics. Furthermore, many interesting
projects span a variety of domains, and would require
that multiple languages be bridged. For example, a
student project that involved syntactic parsing of cor-
pus data from a morphologically rich language might
involve all three of the languages mentioned above:
Perl for string processing; a finite state toolkit for
morphological analysis; and Prolog for parsing.

These same challenges face the teacher of any
computational subject that requires a strong prac-
tical component (such as computational biology). In
this article, we discuss the issues involved in build-
ing a broad-coverage pedagogical toolkit; and show
how we addressed those issues in the Natural Lan-
guage Toolkit (NLTK), a Python-based programming
toolkit developed in conjunction with a course we
have taught at the University of Pennsylvania.

2 Applications

Before designing a pedagogical toolkit, it is important
to consider the uses that it will be put to. We divided
the toolkit’s applications into three basic categories:
assignments, in-class demonstrations, and advanced
projects.

2.1 Assignments

We wanted the toolkit to support homework assign-
ments of varying difficulty and scope. In the sim-
ples assignments, students would use and experiment
with existing components. The toolkit should provide
broad coverage, to allow assignments to be created for
a wide variety of topics. Once students became more
familiar with the toolkit, they could be asked to make
minor changes or extensions to existing components.
Finally, students can be asked to create complete sys-
tems by combining existing components.

1



2.2 In Class Demonstrations

In class graphical demonstrations can be powerful
tools for explaining concepts and algorithms. Inter-
active demonstration tools can be used to display rel-
evant data structures, and to show the step-by-step
execution of important algorithms. It should be pos-
sible to modify both data structures and control flow
during the demonstration, in response to questions
from the class. Finally, any graphical demonstration
tools should be accessible to the students. This allows
students to experiment at home with the algorithms
that they have seen presented in class.

2.3 Advanced Projects

The toolkit should provide students with a flexible
framework for advanced projects. Typical projects
might involve implementing a new algorithm, devel-
oping a new component, or adding support for a new
task.

3 Requirements

Based on these three applications, we defined the fol-
lowing set of requirements for the toolkit’s design,
listed in decreasing of importance.

Ease of Use. The primary purpose of the toolkit is
to allow students to concentrate on building natural
language processing (NLP) systems. The more time
students must spend learning to use the toolkit, the
less useful it is.

Consistency. The toolkit should use consistent
data structures and interfaces.

Extensibility. The toolkit should easily accommo-
date new components, whether those components
replicate or extend the toolkit’s existing functional-
ity. The toolkit should be structured in such a way
that it is obvious where new extensions would fit into
the toolkit’s infrastructure.

Documentation. The toolkit, its data structures,
and its implementation all need to be carefully and
thoroughly documented. All nomenclature must be
carefully chosen and consistently used.

Simplicity. The toolkit should structure the com-
plexities of building NLP systems, not hide them.
Therefore, each class defined by the toolkit should
be simple enough that a student could implement it

by the time they finish an introductory course in com-
putational linguistics.

Modularity. The interaction between different
components of the toolkit should be kept to a min-
imum, using simple, well-defined interfaces. In par-
ticular, it should be possible to complete individual
projects using small parts of the toolkit, without wor-
rying about how they interact with the rest of the
toolkit. This allows students to learn how to use the
toolkit incrementally throughout a course. Modu-
larity also makes it easier to change and extend the
toolkit.

3.1 Non-Requirements

It is equally important to specify properties that are
not expected of the toolkit:

Comprehensiveness. Although the toolkit should
provide broad coverage, it is not intended to provide
a comprehensive set of tools. Indeed, there should be
a wide variety of ways in which students can extend
the toolkit.

Efficiency. The toolkit does not need to be highly
optimized for runtime performance. However, it
should be efficient enough that students can use their
NLP systems to perform real tasks.

Cleverness. Clear designs and implementations
are far preferable to ingenious yet indecipherable
ones.

4 Why Python?

The first step in designing a pedagogical toolkit is
choosing a suitable programming language. Python
is especially well suited to the task, for a number of
reasons:

• Python offers a shallow learning curve; it
was designed to be easily learnt by children
[van Rossum, 1999]. This ensures that students
without a strong computer science background
can quickly get up to speed.

• Python code is exceptionally readable, with
transparent syntax and semantics; it has been
praised as “executable pseudocode.” Examples
are therefore easy for students to follow. Fur-
thermore, students can learn by looking at the
toolkit’s source code, and not just by using it.

2



• As an interpreted language, Python is suitable
for interactive exploration. Students can ex-
periment with the toolkit, and get immediate
feedback.

• Python’s light-weight object oriented system
makes it easy to encapsulate data and meth-
ods in classes, without forcing students to use
them where they’re not necessary.

• Python’s recently added generator syntax
makes it easy to create interactive implemen-
tations of algorithms. These interactive imple-
mentations can be used to “step through” the
algorithm, examining how its state changes as
the algorithm progresses.

• Python’s extensive standard library provides a
great deal of power, when needed. For exam-
ple, the Numeric library can be used to imple-
ment computationally intensive algorithms that
would otherwise be too slow if implemented in
Python.

5 Design

NLTK is implemented as a large collection of mini-
mally interdependent modules, organized into a shal-
low package hierarchy. A set of core modules defines
basic data types that are used throughout the toolkit.
The remaining modules are task modules, each de-
voted to an individual natural language processing
task. For example, the nltk.parser package encom-
passes to the task of parsing, or deriving the syntac-
tic structure of a sentence; and the nltk.tokenizer

module is devoted to the task of tokenizing, or divid-
ing a text into its constituent parts.

5.1 Core Data Types

5.1.1 Token

To maximize interoperability between different mod-
ules, we use a single class to encode information about
natural language texts – the Token class. Each Token

instance represents a single unit of text, such as a
word, sentence, or document; and is defined by (par-
tial) mapping from property names to values. For
example, the TEXT property is used to encode a to-
ken’s text content; and the TAG property is used to
encode a word token’s part-of-speech tag. The LOC

property is used to specify the location of a token
in its containing text. This location can be used to
decide whether two Token objects refer to the same
piece of text or not.

Natural language processing tasks are formulated
as transformations on Tokens. In particular, each
processing task takes a token, and extends it to in-
clude new information. Typically, these modifica-
tions are monotonic; in other words, new informa-
tion is added but existing information is not deleted
or modified. Thus, tokens serve as a sort of black-

board, where information about a piece of text can be
incrementally built up. This architecture contrasts
with the more typical pipeline architecture, where
each processing task’s output discards its input in-
formation. We chose the “blackboard” approach over
the “pipeline” approach because it allows more flexi-
bility when combining tasks into a single system. In
particular:

• Since no information is discarded, and all in-
formation is accessed the same way, students
don’t need to worry about “threading” infor-
mation through the system to the tasks that
need it.

• Because every processing tasks has the same
basic interface, the order in which processing
tasks are applied can be easily modified.

• Monotonic modification allows tasks to trans-
form to a piece of a structure without copying
the remaining structure.

• Monotonic modification ensures that the infor-
mation seen by different tasks is consistent.

The primary disadvantage of the “blackboard” ap-
proach is that it can be inefficient. In particular,
token properties are not deleted even if they will not
be used. But for a pedagogical toolkit, flexibility is
more important than efficiency; and if necessary, the
unused properties can be explicitly deleted.

5.1.2 Token Subclasses

It is often useful to use a token as a key in a dic-
tionary or an element in a set. NLTK therefore
defines a hashable and immutable token subclass,
FrozenToken.

A number of other subclasses are used to sup-
port special token types. For example, the TreeToken
class adds methods for performing tree manipulation
operations; and the ParentedTreeToken class au-
tomatically maintains consistent parent pointers for
tree structures.

3



5.1.3 Other Core Data Types

In addition to the Token class, NLTK defines a vari-
ety of data types that are useful for language process-
ing. For example, the nltk.probabilitymodule de-
fines classes that encode frequency distributions and
probability distributions, including conditional distri-
butions and a variety of statistical smoothing tech-
niques; the cfg module defines classes for encoding
context free grammars and probabilistic context free
grammars; and the corpus module defines classes for
reading and processing standard language processing
corpora.

5.2 Task Modules

Task modules define individual natural language pro-
cessing tasks, such as parsing and tokenizing.

5.2.1 Task Classes

Each processing task algorithm is encoded as a class.
For example, the ChartParser and Recursive-

DescentParser classes each define a single algorithm
for parsing a text. Although it might seem unintu-
itive at first, there are a number of advantages to
using a class (rather than a function) to encode an
algorithm. First, all algorithm-specific options can
be passed to the constructor, allowing a consistent
interface for actually applying the algorithms. Sec-
ond, a number of algorithms need to have their state
initialized before they can be used. For example, the
NthOrderTagger class must be initialized by training
on a tagged corpus before it can be used. Finally,
subclassing can be used to create specialized versions
of a given algorithm.

5.2.2 Task Interfaces

In order to provide a formal specification of the in-
terface for a given task, each task module defines
an interface for its task. These interfaces are en-
coded interfaces as skeletal base classes that use doc-
strings to specify each method’s behavior. Using
epydoc, these docstrings can be inherited by derived
classes [Loper, 2002]. Each required method raises
an AssertionError, since any valid implementation
of the interface must override it; and any optional
methods raise NotImplementedError. Interfaces are
distinguished by naming them with a trailing capital
“I,” such as ParserI and TokenizerI.

Each interface defines a single action method,
which actually performs the task defined by the inter-
face. For example, the ParserI interface defines the
parse method; and the Tokenizer interface defines

Figure 1: The Chart Parsing Demo

the tokenize method. When appropriate, an inter-
face will also define extended action methods, which
provide variations on the basic action method. For
example, the ParserI interface defines the parse n

method, which finds all possible structures for a given
sentence; and the TokenizerI interface defines the
xtokenize method, which outputs an iterator over
subtokens instead of a list of subtokens.

5.3 In-Class Demonstrations

We used the Tkinter toolkit [Lundh, 1999] to create
several tools that can be used to demonstrate the
algorithms implemented by NLTK. We chose Tkin-
ter because it is almost universally distributed with
Python; it is therefore possible for students to play
with the demonstration tools at home. These GUI
demonstrations are built on top of the basic task im-
plementations; and use generators to step through
the algorithm’s operations. The demonstration tools
also modification and manual control over the basic
algorithm. This lets teachers to use the tools to high-
light specific points about an algorithm; and makes it
easy for students to experiment with the algorithm at
home. Figure 1 shows the chart parsing demo, which
is used to illustrate a variety of different chart parsing
algorithms.

6 Conclusions

NLTK is a broad-coverage toolkit that provides a sim-
ple, extensible, uniform framework for assignments,
projects, and class demonstrations. It is well docu-
mented, easy to learn, and simple to use.

4



NLTK is unique among computational linguistics
tools in its combination of three factors. First, it was
deliberately designed as courseware and gives peda-
gogical goals primary status. Second, its target au-
dience consists of both linguists and computer scien-
tists, and it is accessible and challenging at many lev-
els of prior computational skill. Finally, it is based on
an easy-to-learn and easy-to-read programming lan-
guage supporting rapid development and literate pro-
gramming.

We plan to continue extending the breadth of
materials covered by the toolkit. We also plan to
increase the number of algorithms implemented by
some of the existing modules, such as the text classi-
fication module.

NLTK is an open source project, and we welcome
any contributions. Readers who are interested in con-
tributing to NLTK, or who have suggestions for im-
provements, are encouraged to contact the author.

7 Acknowledgements

We are indebted to our students for feedback on the
toolkit, and to all the independent contributors who
helped add new content to the toolkit. We are grate-
ful to Mitch Marcus and the Department of Com-
puter and Information Science at the University of
Pennsylvania for sponsoring the original development
of the toolkit.

References

[Loper, 2002] Loper, E. (2002). Epydoc. http://

epydoc.sourceforge.net/.

[Loper and Bird, 2002] Loper, E. and Bird, S.
(2002). Natural language processing toolkit. http:
//nltk.sourceforge.net/.

[Lundh, 1999] Lundh, F. (1999). An introduction to
tkinter. http://www.pythonware.com/library/

tkinter/introduction/index.htm.

[van Rossum, 1999] van Rossum, G. (1999). Com-
puter programming for everybody. Technical
report, Corporation for National Research Ini-
tiatives. http://www.python.org/doc/essays/

cp4e.html.

5


