
1

Setting A Context
for the

Web User
or

The "Back" Button is Not Your Friend

Steve Holden
Holden Web LLC

I have only made this longer because
I have not had the time to make it shorter

Blaise Pascal, Lettres Provinciales, letter 16 (1657).

This short paper discusses two ideas that I have been working with, for over a year
now. The battle is always to strip away the inessential, leaving only those features
that are absolutely necessary to a system's function. As you will see, the ideas are
quite simple enough for anyone with a grasp of web fundamentals to understand.

This paper is a description of work in progress, and there is still a lot to be achieved
in terms of simplifying the implementation. I have chosen to present it because the
ideas are an interesting example of how two simple concepts can become more
powerful when juxtaposed. There is still more simplification to do, and the only way
to overcome existing time limitations seems to be to intorduce them to a wider
development community in the hopes of picking up some support.

While each idea is simple on its own, together they do enable remarkably direct web
interfaces to be built. Sadly it's often difficult to describe simple ideas with
sufficient clarity, hence the Pascal quotation on this slide. Please forgive me if this
doesn't seem as simple as it really is.

2

Most Web Interfaces Are Clunky

• Simplest model displays different aspects of
a static state

• Stateless protocols encouraged stateless
applications
– Then came cookies

• Data maintenance changes system state
– This is where problems can begin

The web as originally conceived was a way to interlink large volumes of data. Tim
Berners-Lee's vision for the web was of links between scientific papers and results,
to allow free interchange of ideas and observations. Berners-Lee was by no means
the first person to work on hypertext, but he was the first person to conceive of a
system sufficiently simple to allow immediate wide applicability. As with many
good ideas the web quickly overran that vision, and with the development of the
Common Gateway Interface it became a medium for requesting computed
(dynamic) as well as static content.

As long as the computation performed depends only on information in the URL,
everything is completely deterministic. Under these circumstances the "back" button
is just an optimisation to allow the user to make use of a locally-cached copy of an
already-computed result.

This view of the back button fails, however, when the result of the server accessing
a URL is not time-invariant, such as when it includes information retrieved from a
database that is being updated by several independent agents. Under these
circumstances there is no guarantee that the browser's cached copy of the remote
state is still accurate. This is especially painful when the retained copy of a page is
used to update the remote repository's state, since it can overwrite changes made in
the interim by other users.

Netscape invented the cookie mechanism preciely to overcome the intentionally
stateless nature of the HTTP protocol specification. This allowed sucessing requests
from the same browser to be associated with each other, and made it possible to
build stateful systems with relative ease To my mind the design of web interfaces

3

Interfaces Are Really
Views of System State

• As system state changes
– so does the response for a given set of arguments
– How do you like that "back" button now?

Repository
(system state)

(Web) Server

Network

request(args)

response(args, state)

A

C

B

Here we see a diagrammatic representation of the kind of system the last slide talked
about. Each of the three clients is displaying overlapping portions of the server
system's state, which is often held in a relational database or similar shared
repository. The repository is some model, or representation, of those aspects of the
real world that the users are interested in. A good system allows users to update the
model as changes take place in the real world, so that information from the model
will be authoritative about the real world.

Even with a single user, the possibility exists that the back button will return them to
a page that contains a historic version of the system state rather than the current
state. When multiple users start to hit the system things quickly get worse, since the
probability that the state has changed increases rapidly. But the more dynamic the
model is, the more important it is to ensure that any information delivered to the
users is as up-to-date as it can be.

Since the state of the system now depends on time, the back button is a useless
appendgae for systems that want to keep their users in touch with live data all the
time.

4

All the Same, History is Useful

• For example:
– Use one page for data needed by another

• Copy-and-paste is a bit of a nuisance

– "What was I doing before this?"
• Old farts particularly like this one…

• Could it be more useful … ?
– What if a web page could return a result?
– A bit like a function …
– Then we could write pages to search for things!

Typically, web users will navigate forward to a page, sometimes part of an entirely
diferent site, that contains some information they want to enter into a form. They
copy it, then go back to the form and paste to enter that data. It would be nice to
build our sites to assist such behavior.

Since the age of four I've noticed that I frequently arrive at a short-term destination
having forgotten why I was going there. This phenomenon doesn't get better as one
gets older. So the back button does have some justification, but I am much happier
with the idea of a system that's programmed to perform that function on the server-
side.

This means that users always see fresh copies of the data, which is quite important
in an information system – important enough to bear the cost of additional server
round-trips, in this author's estimation. If network transit delays dominate a system's
performance then a web interface may not be such a good idea.

5

Example: Relationship Update

• Typical requirement:
– Select the address for a person from the address table

• One-to-many relationship:
Person lives_at Address

– Implemented as a foreign key attribute of Person
– Attribute of Person specifies instance of Address

Note that this example stores addresses as separate database entities, rather than
simply carrying them as attributes of the person. This has many desirable features
for a system that deals with families of people – if one person changes their address
it's easy, for example, to present a form where the others currently at the "from"
address can be checked if they too have moved. The important thing is the
relationship, and the concepts in this paper apply to all data relationships (if which
there will be many in a typical relational repositoiry).

In this particular example we see a one-to-many relationship between Address and
Person – a single address can be related to many occurrences of the Person entity.
The relationship is represented by storing primary key values (identifying the
specifically related occurrences of the Address entity) as an attribute value inside
the Person entity.

Many-to-many relationships are a little more complicated, but in essence the same
techniques can be used to maintain them too, as I will demonstrate after the
presentation.

6

Maintaining Relationships (1)
•Easy with a small number of addresses

– use a <SELECT> form element
– One <OPTION> per address

<SELECT NAME="AddressID">
…
<OPTION VALUE="32">1600 Pennsylvania Avenue</OPTION>
</SELECT>

?PersonID=5&AddrID=32 …
PersonForm.py

?PersonID=5 …

PersonUpdate.py

Please note that this series of slides is NOT intended to help you avoid arguing with
your significant other.

The cardinality of the related entity (in our example, how many rows we have stored
in the Address table) will make a difference to the interface paradigm you choose.
With few addresses we might dynamically generate a drop-down list containing
them all. In this case there is no need for complex logic: the server presents all the
options, and the user just selects the appropriate ine before submitting the form.

Usually we try to ensure that when the form is displayed, the current address is
already selected in the list. This avoids unintended address changes and requires
minimal action from the user when submitting the form. For conveninence I assume
here that the PersonUpdate page redirects back to the PersonForm page to display
the updated database contents. In cases like this that isn’t usually necessary, since
the content of the form just after the update should be exactly the same as when it
was submitted.

7

Maintaining Relationships (2)

• With more addresses?
– Link to a page with address update links

…
1600 Pennsylvania Avenue

?PersonID=5&AddressID=32 …

PersonForm.py

AddrSelect.py

LivesAtUpdate.py
?PersonID=5

?PersonID=5

?PersonID=5

If we can easily present all addresses on a single page, but there are too many for a
convenient dropdown, then we might choose an interface where the user clicks on a
"Change Address" link and is taken to a separate page that lists all the addresses.
When they select a specific address, this calls a relationship update page, which puts
the appropriate address in the identified Person row and then redirects back to the
Person form.

Because Person is the subject of the LivesAt relationship, it's a fairly safe bet for the
LivesAtUpdate page to redirect back to the PersonForm page. The AddrSelect page
has to be specially contructued for this particular relationship, however, and cannot
be readily re-used to select an address for a company or some other entity without
quite a lot of additional complexity (like the page is has to link to, and the attributes
it has to put in the links to that page).

8

Maintaining Relationships (3)
• With even more addresses?

– Link to a search page
– That generates a subsetted links page

?PersonID=5&AddressID=32 …

PersonForm.py
AddrSrchLst.py

LivesAtUpdate.py

?PersonID=5

?PersonID=5

?PersonID=5

AddrSearch.py?PersonID=5

?PersonID=5&SearchString=y

Sometimes there are so many occurrences of the related entity that it isn't practical
to present them all at once. In these cases we have to adopt a strategy that allows us
to display only a chosen subset of the occurrences, and select one of those.

This complicates the logic still further, but web designers are used to this sort of
contortion. Of course, now we have two pages that have to be specialized for each
Address selection we want to make.

9

What We'd Like to Do

• What if we've changed
the form contents?
– We should action the

form before following
the link …

• Can we get back?
– Without writing many

SelectAddress pages, one
per relationship …

• Put a link on the form to a page that selects an
address and updates the Person row. But …

Here we see what looks like the simplistic answer to the problem. We just put a link
on the form to some page that allows us to select a new address for the person.

Unfortunately, inexperienced web users seeing such a link often don't realise that
they could either follow the link or change form data, but not both. We know that
following a link won't action the form, but they don't. And, to be fsir, this is really a
detail that the user shouldn’t have to be concerned about.

Unfortunately the net result of such a web page design is that the user will often try
and edit the form contents and then link out to the address change page. Later on
they wonder why the changes they made in the form haven't been recorded. So it
would be nice to provide them with a solution where they can make form changes
and link out to other functionality. With a little bit of client-side functionality it
turns out this isn’t that hard to arrange.

Of course there's still the question of how the "Change Address" page knows to
return to the "Contact Details" form. The classic solution for this problem is to have
a separate "Change Address" page for each different context where one is required.
This creates a lot of copy-and-paste coding, which is a maintenance nightmare
waiting to happen. Sometimes a certain amount of code re-use can be achieved with
judicious use of server-side includes or the like, but this can get really ugly quite
quickly, and it still requires a certain amount of programmer setup.

Of course, if I didn’t think there were a better way I wouldn’t have written this
paper …

10

Two Ideas Come Together

• Multi-Exit Forms
– User selects a link
– Client-side code sets a

deferred redirect URL
in a form variable and
calls
form.submit()

– Server-side handler
processes form and
then redirects to the
deferred redirect URL

• Web Functions
– Use dynamic linkages

rather than static
– Session state "remembers"

return URLs
– Allows creation of

reusable pages
• Select an <entity-type>
• Edit related <occurrence>
• etc.

The possiblity of allowing many exits from a form isn't that difficult to implement.
The form can include a hidden field value that contains the URL that the processing
page should be redirected to. If the form is generated dynamically then the URL in
the hidden field can vary, but a more complete solution will allow several different
links on a form, each causing the form processor to redirect to a different URL.

For a page to be fully reusable, it really needs to be independent of its context – or,
more accurately, its context needs to retain information about the preeceding
activity, which somehow needs to be incorporated into the generated HTML in such
a way as to maintain linkages.

11

Multi-Exit Forms (1)
<input type="hidden" name="URL">
• A link's href attribute becomes:

href="javascript:SubThen('newURL')"

• Ignoring complexities:
function SubThen(newURL) {
document.forms[0].URL.value = newURL;
document.forms[0].submit()

}

• Form is submitted after setting URL.value
– Actual code allows validation function call, etc.

This slide shows the very modest amount of client-side program that is required to
enable multiple exits from a single form.

When the user clicks on any link, this overwrites the value of the hidden URL field
with the required destination, and the form is submitted. As long as form processing
pages redirect to the value of the URL field after updating the system state, this is
just about all that's required.

It is always possible to add more detail to the infrastructure, to ensuire that
validation takes place before any attempt is made to submit the form, but this is
detail rather than essence.

12

Multi-Exit Forms(2)

• Server receives submission
– Activates the form processing web page

• Processing page updates system state
– Using form contents
– Then redirects to where the URL input sends it

• Different links redirect to different pages …

This elucidates the sequence of actions that take place when a user clicks on one of
the links in a multi-exit form. Since the value of the URL element in the form is
determined by which link was clicked, the eventual destination is no longer
completely determined at HTML generation time.

13

Multi-Exit Forms (3)

CoForm.py

SelectCo.py

AddForm.py

SelectAdd.py

PersonUpdate.py

•Each link updates the person before redirecting appropriately

•Would be nice to be able to get back, too …

PersonForm.py <form action="PersonUpdate.py">

The net result of all this finagling is that we can, by use of this technique, provide
links in our forms that the user can click on without fear that form changes will not
be actioned by the system. Very useful.

Typically we would like to see the results of our editing work reflected in a revisited
PersonForm.py page without having to go through the business of selecting the
same Person row again. That's where the web functions come in.

14

Web Functions (1)

• Basic idea:
– Save the "calling" URL
– Compute some result

• This may require a sequence of pages
• The "calling" URL has to be carried along

– Finally obtain the result
• Redirect back to the calling URL …
• … providing the "result" as an additional argument!

Thinking about the problem eventually led me to the second idea, which is the one I
haven't heard of before. But, since there's nothing new under the sun, probably
someone somehere has been using this technique for years.

Clearly when the server generates a link from one page (the calling page) to another
(the called page), it would be possible to include the URL of the calling page as an
argument to the called page. As long as all pages are dynamic this return link could
be carreid through a sequence of pages, and eventually used by some page to
redirect back to the calling page.

15

Web Functions (2)

• Suppose a page needs a CompanyID
– But it is called without one

• So it calls a "Select Company" page
• This lets you search existing company rows

– Even create a new one!
• Return URL extends the original caller's

– http://CallingURL?orig=1&CompanyID=N

Many times in designing web systems we need to select the same thing in many
different contexts. Typically such a selection just amounts to nominating a specific
primary key value to refer to an instance of some entity, as in the case of the
relationship update we looked at earlier.

The more relationships a specific entity-type is involved in, the more useful a
reusable "Select an Instance" component is likely to be.

16

Web Functions (3)

PersonForm.py
?PersonID=23

WorksForUpdate.py

?PersonID=23

WorksForUpdate.py

?PersonID=23&CompanyID=77

User Selects
Company 77

User Clicks
"Change Company"

Form Exit Link (Call)

PersonUpdate.py
?PersonID=23 …

No CompanyID
- Calls SelectCo.py

Returns
selected

CompanyID

PersonForm.py
?PersonID=23

SelectCo.py

PUSH*

PUSH POP

POP

* The PUSH is effectively from PersonForm.py

This illustrates the basic concept of the "web function call".

The user is editing a particular Person's details, and needs to change the Company
the Person works for. So they click on the "Change Company" form exit link, which
transfers control out through the PersonUpdate page (to ensure any changes are
actioned) to the WorksForUpdate page. Since no Company is identified in the URL,
WorksForUpdate calls the SelectCo page. The user selects a specific company by
clicking on a link on that page.

Since the entry to SelectCo was a call, the links are all of the form - in other words,
they are return links to the calling page. So when the user selects a company, they
automatically trigger an update of the Person they were editing. The
WorksForUpdate page goes back to the PersonForm page, which reads the updated
Person row and displays the updated information.

17

Web Functions (4)

• Of course, one function may want to call
other functions …
– So we use a stack
– Stored in session state

Programmers are used to the idea that function calls can be nested. By using a stack
in the session state, web function calls can be nested as well. This makes the whole
concept more general, and allows web functionality to be designed as callable page
sequences. By arranging for these sequences to return to the URLs from which they
were linked we do actually get a system that allows users to perform updates and
return automatically to the record they were editing, in its updated form.

18

Initial Implementation

• These ideas were prototyped for the NIH
– System to recruit research study subjects

• CORE: Central Office of Recruitment and Evaluation

– Initial implementation in VBScript

• Simplified stack frame (because of VBS):

• Surprisinging what this simple scheme can do …

PageName

ParameterValue

(stored as 2
separate arrays)

Around the time I was thinking all these things through for the first time, I was
contracted by the National Institute of Mental Health to build a web-based system to
help them record and control the subjects they recruited for research studies.The
problem seemed to be amenable to this type of solution, and as time went by the
database desing involved to become moderately complex …

19

CORE Database Overview

… which made me think that this would be a good test of the ideas behind what I
was starting to think of as the "stacking web framework". The initial design had to
be built in VBScript using MacroMedia DreamWeaver UltraDev, which forced me
to use a simple stack frame where each object in the stack frame was represented by
a separate array.

Rather than store the whole URL of the calling pages I chose to save just the page
name, and a single parameter value. I initially thought the system would soon need
to relax these restrictions, but as it turnede out I was wrong.

Because the database is a bit too complex to describe in detail, I am going to focus
on the Person entity and its relationships.

20

CORE Person Relationships

As you can see from this slide, there are quite a few relationships to consider.
People are also the subject and the caller for telephone calls. Rather than attempt to
show screen dumps for the many pages that hande all this functionality, I will show
this part of the system in operation on test data. You can see it is perfectly possible
to start editing one perosn's data, from there edit one of the calls about them, from
there edit the details of the person who made that call, and so on. Each time an edit
is completed, lo and behold, the (updated) page from which the edit was triggered
reappears on screen.

Note that you can actually see the stacked pages waiting to be reactivated when the
stack trace is enabled. It's perfectly possible

21

Demonstration

• This is the CORE system
– Still not complete
– But demonstrating web functions and

multi-exit forms

This slide introduces a short demonstration of the functionality the slides have
described.

22

Lessons Learned (1)

• The URLs are clunky:
CallUpdate.asp?CallID=5&Tp=Call&Md=List&Pm=11&Action=push

– Action says how to handle the stack
• push: a call, stack existing page & argument
• pop: a return, unstack page & argument

(but page & argument already in URL …)
• start: reset stack and start afresh

– Tp and Md together make calling page name
• Separated for historical reasons

At the moment the URLs used to implement the stacking and unstacking are ugly in
the extremem, and because stack operations are indicated by an action such as push
or pop it is difficult to handle user history navigation correctly. If some scheme
involving the value of the stack pointer rather than operations on the stack were
used then one might conceive of using the stack frame elements, or at least selected
stack frame elements, as "breadcrumbs" to allow the user to jump down the stack
more directly than unwinding all operations one by one, for example.

23

Lessons Learned (2)

• VBScript is a very limiting language*
– No user-created classes
– Limited data types
– Primitive functionality and syntax

• Stack frame should include a namespace
– Pages can use as much local storage as needed

• Argument handling should be more flexible
– Need to save names and value of multiple args

* Actually I knew this already: the customer is always right

The initial implementaiton in VBScript suffered badly. In part this was because the
framework was developed incrementally – if everything had been known in advance
then there would have been no need, for example, to separate the page name into the
two components that it currently uses.

24

Python Web Functions

• Current development platform is better
– Python!
– With mod_python for web integration

• Stack frame is now an object
– .URI: "…" # calling page, with args

.args: { … } # currently mixes args & state

Now that the modest amount of framework support code necessary for this has been
migrated to Apache and mod_python it is possible to consider much more flexible
use of state information. At present the arguments passed to a page are held in the
same dictionary as "page-local" variables, but a separation of those two namespaces
will lead to a much cleaner separation of framework and application functions.

25

{mod_p, P}ython Advantages

• Representational versatility
– More natural representation of complex data
– User-defined classes/datatypes
– Easier to treat stack as nested namespaces

• Framework integrates into server
– VBScript includes framework in each page
– But grisha says I need a re-work!

In the new environment coding is much more pleasurable, and it seems as though
the change to Python will be entirely benficial.

26

Current State of Play

• Mod_python Apache request handler
• "Toy" system to maintain 3-table database:

Company AddressPerson

is_located_at

works_for works_at

At the moment the Python implementation is a little bogged down with mod_python
issues. I am not an Apache internals wizard, so progress on the handler side of
things has been somewhat slow. The system demonstrates the principles reasonably
well, but falls over occasionally. I would describe it as clearly experimental.

Gregory Trubetskoy, mod_python's author, was kind enough to review the existing
code, and suggested that the framework should be part of the fixup handler rather
than the request handler. There, for the moment, things rest, as I have not had time
this year to action his usggestion, and don't know enough about the fixup handler to
be able to readily identify the required changes.

27

Desirable Futures

• Functions could return namespaces
– Update args of calling page?

• Namespace search
– "If not in current namespace, look in caller's"
– Might avoid some argument passing altogether

• Less crufty implementation
• Development of standard paradigms

Now that Python is the implementation language, there are many possibilities that
would have been far too complex to implement in the original VBScript framework,
and I am looking forward to investigating them.

28

Summary

• Project has proved some interesting ideas
– But slowly!

• Looking for help
• Open source definitely a goal

– Unlikely to inhibit commercial exploitation
– Contact sholden@holdenweb.com

• Thanks for listening

The primary motivation for making this PyCON presentation is to involve other
people. I feel that an infusion of new ideas will be entirely beneficial, and that
people can learn from the shortcomings of the prototype system how to better
develop web interfaces with some of the characteristics of the prototype. I am happy
to say that Sean Reifschneider of tummy.com has offered to help make this possible,
so look for something to appear on SourceForge before too long.

