
Faster than C: Static type inference
with Starkiller

Michael Salib
msalib@alum.mit.edu

Dynamic Languages Group
Computer Science & Artificial Intelligance Lab

Massachusetts Institute of Technology

March 24, 2004

This talk in 60 seconds

 There is no time. Ask me later!
 Python is slow
 Starkiller is a Python to C++ compiler
 It handles the entire language except one

tiny, insignificant, morally deranged part
 Starkiller has one goal: lighting fast native

code
 Of course, if we want speed, maybe C++

wasn't such a good idea...fortunately, it is
very simple and easy to understand

This talk in 120 seconds

 Starkiller's heart is its type inferencer
 We will cut open its heart
 Starkiller has been implemented, but not

finished
 Remember this number: 60
 Moral of the story: the past is dead

The Past

 Python is slow
 No it's not!
 Yes it is!
 This is why it is slow
 Everything else sucks

Python is slow

 I've done everything with Python
 High speed network servers
 Databases
 Statistical natural language processing
 Scientific computing
 Signal and Image processing
 AI type job schedulers

 And its been slow

Python is not slow!

 You're a heretic!
 Most apps spend all their time waiting

 on a socket (network servers)
 on a slow human (GUIs)
 on Oracle (databases)
 on disk IO (most things)

 Fast libraries written in C/C++
 Numeric!
 Die infidel, die!

Yes, Python is slow

 I've used all those lines myself
 I even believe them
 They're relevant most of the time
 But they don't change the fact that Python

is slow
 Sometimes, straightforward Python code is

much clearer and easier to write than fight-
ing with Numeric

 For the 15% of apps where speed matters,
pure Python can't do the job alone

 I don't want to use crappy C/C++

 It is not the VM: p2c showed that
 Layers of indirection
 Dynamic binding
 Dynamic dispatch
 No structure/size information
 Run time choice points foil the last 30 years

of optimization research
 Speed comes from eliminating run time

choice points

Why Python is slow

Other languages suck

 Java sucks beyond all measure and com-
prehension

 C++ and Java suffer the same performace
problems as Python when it comes to dy-
namic dispatch

 Dynamic dispatch prevents the compiler
from using all the cool optimizations like in-
lining

 Inlining is the canary in the coal mine: if you
can't inline, you probably can't do loop
hoisting, strength reduction, etc.

The Present

 Starkiller type inference
 nodes and constraints
 functions and templates
 objects and classes
 external code

 Status
 Results

Starkiller

 Compiling to C++ is not enough (cf p2c)
 Need static type inference to eliminate dy-

namic binding and dispatch
 Starkiller compliments rather than replaces

CPython
 Covers the entire language except eval,

exec, and dynamic module loading
 Not all run time choice points can be elim-

inted, but many can

Starkiller type inference

 Based on Ole Agesen's Cartesian Product
Algorithm (see his Stanford thesis)

 Represent Python programs as dataflow
networks

 Nodes correspond to expressions and have
a set of concrete types those expressions
can achieve at runtime

 Constraints connect nodes together and en-
force a subset relation between them

 Types flow along constraints

Ex-girlfriends say I'm insensitive

 Starkiller's type inference algorithm is flow-
insensitive

 It has no notion of time
 Code like x = 3; doSomething(x); x = 4.3;

doSomething(x) will suffer loss of precision
 I don't care. I'm insensitive, remember?

Type inference in action

 A simple example
● x = 3
● y = x
● z = y
● z = 4.3

Functions and Templates

 Parametric polymorphism (same function
with different argument types) reduces pre-
cision

 We regain precision by taking cartesian
product of argument type list and analyzing
one template for each monomorphic argu-
ment list

 Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int,
int), (float, int), (int, float), and (float, float)

Functions and Definitions

 A Python function defintion creates a first
class object at runtime

 Function objects can capture variables de-
fined in their lexical parent(s)

 Starkiller models function definition using a
function definition node that has constraints
from all default args and expressions the
function closes over

 The definition node takes the cartesian
product and generates monomorphic func-
tion types

Objects and Classes

 Class definition works just like function def-
inition!

 Instances work in the same way as classes!
 Calling a class triggers the creation of an

instance definition node
 ID nodes are the repository for the poly-

morphic state of an instance
 They generate monomorphic instance state

types and send them into the world

Foreign Code

 Type inference cannot see into an exten-
sion module

 There lies doom
 Starkiller gives extension writers a minilan-

guage for declaring the type inference
properties of their extensions

 Most extensions are real simple: int(x) al-
ways returns an integer

 Of course, when Starkiller is done, there
will be no reason for foreign code (just kid-
ding)

Foreigner code, among us, plotting
against us!

 Some extensions are unspeakably compli-
cated

 they might call arbitrary functions
 they might mutate their arguments or some ob -

ject that is part of global state
 The external type description language is

really Python
 External type descriptions run as extensions of

the Starkiller type inferencer
 You can use them to raise the dead

Where are we now?

 Starkiller type inferencer is mostly imple-
mented

 almost all of the hard parts are done
 most of the unfinished work is boring detail

 The compiler is in the very early stages
 a prototype works on simple code that doesn't

push it too hard
 no runtime system, no builtin types except int

and float

“I wrote emacs, will you sleep with
me?” -RMS

 Where is the code?
 The compiler will be released under the GPL
 The runtime library will be under the LGPL
 We're still waiting for MIT to do the paperwork
 So no code for you today! Sorry!
 If you kill me now, you'll never get it
 Ask me if you want to look at the code here

 Expect a release in early May
 I know, you hate the GPL

 Starkiller is a research toy that will never be
useful in a production environment

Suckling on the government teat

 Who owns Starkiller? MIT!
 Who paid for Starkiller's development?

You did! Pat yourselves on the back!
 Thank you taxpayers!
 “So, that means that you are a whore, MIT

is your pimp, and DARPA is the john who
likes to play rough. . .Hey Mike, is there
anything you won't do for money?”

 A secret: don't tell DARPA I'm not building
the sun destroying weapon they think I am.

Justify your existance

 Very preliminary benchmark with the proto-
type compiler and type inferencer

 All benchmarks are lies
 This one is pathological
 Call the factorial and fibonacci functions
 In a loop. Over and Over.
 CPython completion time: 03:16
 Starkiller completion time: 00:03.25
 Speedup: 60

The Future

 Development plan
 Future directions
 Doorway to a new world
 Questions

Development Plan

1. Finish thesis and graduate
2. Find job and avoid sleeping under bridge
3. Find new girlfriend
4. In copious spare time, make Starkiller take
 over world
• finish type inferencer

• get eval/exec working
• finish compiler
• extra optimization passes

• static and stack allocation

Future Directions

 The same techniques that Starkiller uses
for type inference can be used to solve oth-
er problems

 Free threading
 Static error detection
 Object lifecycle tracking
 Vectorizing and loop fusion

Doorway to a new world

 The past is dead
 The old limits don't apply anymore
 We will feast on the flesh of the fortran pro-

grammers!
 In two years, Python will be faster than

C/C++ for scientific computing
 Most people still won't accept it, but that is

because technical reality takes a backseat
to culture

Questions

 Indictment of the sun
 We hatessss it! It burns, it burns!
 The pale yellow face mocks us, keeps us from

hearing the machine
 Causes global warming
 Sunburns
 DARPA says sun bad. It warms our enemies.
 Weakens our dependence on foreign oil

 There is only one logical conclusion: we
must destroy the sun

