
Faster than C: Static type inference
with Starkiller

Michael Salib
msalib@alum.mit.edu

Dynamic Languages Group
Computer Science & Artificial Intelligance Lab

Massachusetts Institute of Technology

March 24, 2004

This talk in 60 seconds

 There is no time. Ask me later!
 Python is slow
 Starkiller is a Python to C++ compiler
 It handles the entire language except one

tiny, insignificant, morally deranged part
 Starkiller has one goal: lighting fast native

code
 Of course, if we want speed, maybe C++

wasn't such a good idea...fortunately, it is
very simple and easy to understand

This talk in 120 seconds

 Starkiller's heart is its type inferencer
 We will cut open its heart
 Starkiller has been implemented, but not

finished
 Remember this number: 60
 Moral of the story: the past is dead

The Past

 Python is slow
 No it's not!
 Yes it is!
 This is why it is slow
 Everything else sucks

Python is slow

 I've done everything with Python
 High speed network servers
 Databases
 Statistical natural language processing
 Scientific computing
 Signal and Image processing
 AI type job schedulers

 And its been slow

Python is not slow!

 You're a heretic!
 Most apps spend all their time waiting

 on a socket (network servers)
 on a slow human (GUIs)
 on Oracle (databases)
 on disk IO (most things)

 Fast libraries written in C/C++
 Numeric!
 Die infidel, die!

Yes, Python is slow

 I've used all those lines myself
 I even believe them
 They're relevant most of the time
 But they don't change the fact that Python

is slow
 Sometimes, straightforward Python code is

much clearer and easier to write than fight-
ing with Numeric

 For the 15% of apps where speed matters,
pure Python can't do the job alone

 I don't want to use crappy C/C++

 It is not the VM: p2c showed that
 Layers of indirection
 Dynamic binding
 Dynamic dispatch
 No structure/size information
 Run time choice points foil the last 30 years

of optimization research
 Speed comes from eliminating run time

choice points

Why Python is slow

Other languages suck

 Java sucks beyond all measure and com-
prehension

 C++ and Java suffer the same performace
problems as Python when it comes to dy-
namic dispatch

 Dynamic dispatch prevents the compiler
from using all the cool optimizations like in-
lining

 Inlining is the canary in the coal mine: if you
can't inline, you probably can't do loop
hoisting, strength reduction, etc.

The Present

 Starkiller type inference
 nodes and constraints
 functions and templates
 objects and classes
 external code

 Status
 Results

Starkiller

 Compiling to C++ is not enough (cf p2c)
 Need static type inference to eliminate dy-

namic binding and dispatch
 Starkiller compliments rather than replaces

CPython
 Covers the entire language except eval,

exec, and dynamic module loading
 Not all run time choice points can be elim-

inted, but many can

Starkiller type inference

 Based on Ole Agesen's Cartesian Product
Algorithm (see his Stanford thesis)

 Represent Python programs as dataflow
networks

 Nodes correspond to expressions and have
a set of concrete types those expressions
can achieve at runtime

 Constraints connect nodes together and en-
force a subset relation between them

 Types flow along constraints

Ex-girlfriends say I'm insensitive

 Starkiller's type inference algorithm is flow-
insensitive

 It has no notion of time
 Code like x = 3; doSomething(x); x = 4.3;

doSomething(x) will suffer loss of precision
 I don't care. I'm insensitive, remember?

Type inference in action

 A simple example
● x = 3
● y = x
● z = y
● z = 4.3

Functions and Templates

 Parametric polymorphism (same function
with different argument types) reduces pre-
cision

 We regain precision by taking cartesian
product of argument type list and analyzing
one template for each monomorphic argu-
ment list

 Given polymorhic calls max(1, 2) and max
(3.3, 4.9), we analyze templates for (int,
int), (float, int), (int, float), and (float, float)

Functions and Definitions

 A Python function defintion creates a first
class object at runtime

 Function objects can capture variables de-
fined in their lexical parent(s)

 Starkiller models function definition using a
function definition node that has constraints
from all default args and expressions the
function closes over

 The definition node takes the cartesian
product and generates monomorphic func-
tion types

Objects and Classes

 Class definition works just like function def-
inition!

 Instances work in the same way as classes!
 Calling a class triggers the creation of an

instance definition node
 ID nodes are the repository for the poly-

morphic state of an instance
 They generate monomorphic instance state

types and send them into the world

Foreign Code

 Type inference cannot see into an exten-
sion module

 There lies doom
 Starkiller gives extension writers a minilan-

guage for declaring the type inference
properties of their extensions

 Most extensions are real simple: int(x) al-
ways returns an integer

 Of course, when Starkiller is done, there
will be no reason for foreign code (just kid-
ding)

Foreigner code, among us, plotting
against us!

 Some extensions are unspeakably compli-
cated

 they might call arbitrary functions
 they might mutate their arguments or some ob -

ject that is part of global state
 The external type description language is

really Python
 External type descriptions run as extensions of

the Starkiller type inferencer
 You can use them to raise the dead

Where are we now?

 Starkiller type inferencer is mostly imple-
mented

 almost all of the hard parts are done
 most of the unfinished work is boring detail

 The compiler is in the very early stages
 a prototype works on simple code that doesn't

push it too hard
 no runtime system, no builtin types except int

and float

“I wrote emacs, will you sleep with
me?” -RMS

 Where is the code?
 The compiler will be released under the GPL
 The runtime library will be under the LGPL
 We're still waiting for MIT to do the paperwork
 So no code for you today! Sorry!
 If you kill me now, you'll never get it
 Ask me if you want to look at the code here

 Expect a release in early May
 I know, you hate the GPL

 Starkiller is a research toy that will never be
useful in a production environment

Suckling on the government teat

 Who owns Starkiller? MIT!
 Who paid for Starkiller's development?

You did! Pat yourselves on the back!
 Thank you taxpayers!
 “So, that means that you are a whore, MIT

is your pimp, and DARPA is the john who
likes to play rough. . .Hey Mike, is there
anything you won't do for money?”

 A secret: don't tell DARPA I'm not building
the sun destroying weapon they think I am.

Justify your existance

 Very preliminary benchmark with the proto-
type compiler and type inferencer

 All benchmarks are lies
 This one is pathological
 Call the factorial and fibonacci functions
 In a loop. Over and Over.
 CPython completion time: 03:16
 Starkiller completion time: 00:03.25
 Speedup: 60

The Future

 Development plan
 Future directions
 Doorway to a new world
 Questions

Development Plan

1. Finish thesis and graduate
2. Find job and avoid sleeping under bridge
3. Find new girlfriend
4. In copious spare time, make Starkiller take
 over world
• finish type inferencer

• get eval/exec working
• finish compiler
• extra optimization passes

• static and stack allocation

Future Directions

 The same techniques that Starkiller uses
for type inference can be used to solve oth-
er problems

 Free threading
 Static error detection
 Object lifecycle tracking
 Vectorizing and loop fusion

Doorway to a new world

 The past is dead
 The old limits don't apply anymore
 We will feast on the flesh of the fortran pro-

grammers!
 In two years, Python will be faster than

C/C++ for scientific computing
 Most people still won't accept it, but that is

because technical reality takes a backseat
to culture

Questions

 Indictment of the sun
 We hatessss it! It burns, it burns!
 The pale yellow face mocks us, keeps us from

hearing the machine
 Causes global warming
 Sunburns
 DARPA says sun bad. It warms our enemies.
 Weakens our dependence on foreign oil

 There is only one logical conclusion: we
must destroy the sun

