
Faster than C: Static Type Inference with Starkiller

Michael Salib

March 26, 2004

Abstract

Pure Python code is slow, primarily due to the dynamic nature of the language.
I have begun building a compiler to produce fast native code from Python source
programs. While compilation can improve performance, any such gains will be modest
unless the compiler can statically resolve most of the dynamism present in source
programs. Static type inference for Python programs would enable the safe removal of
most type checks and most instances of dynamic dispatch and dynamic binding from the
generated code. Removing dynamic dispatch and binding leads to large performance
benefits since their existence precludes many traditional optimization techniques, such
as inlining. I have built a static type inferencer for Python called Starkiller. Given a
Python source file, it can deduce the types of all expressions in the program without
actually running it. Starkiller’s primary goal is to take a Python source program as
input and deduce the information needed to make native code compilation of that
program easy. This paper is describes Starkiller’s design and operation. It is partially
adapted from a draft of my Master’s thesis.

Contents

1 Executive Summary 3

2 Introduction 4

3 Core TI Algorithm 5
3.1 Nodes and Constraints . 7
3.2 Functions . 8
3.3 Classes and Objects . 10

4 Advanced Language Features 12
4.1 Operators . 12
4.2 Exceptions . 13
4.3 Iterators and Generators . 14
4.4 Modules . 15

1

5 Foreign Code Interactions 15
5.1 External Type Descriptions . 15
5.2 The builtins Module Type Description . 16

6 Known Problems and Limits 18
6.1 Eval, Exec, and Dynamic Module Loading 18
6.2 Static Error Detection . 23
6.3 Partial Evaluation . 24
6.4 Integer Promotion . 25

2

1 Executive Summary

Pure Python code is slow. Most of the time, that doesn’t matter because application per-
formance generally doesn’t depend on pure Python very much. Nevertheless, there are
situations where it does matter, so I’ve spent time trying to discover how to improve the
performance of pure Python code. I believe that static compilation is the answer.

The greatest obstacle to efficient compilation and high performance is Python’s dynamic
nature: every operation must verify that its operands are of the correct type, every access
requires going through layers of indirection, etc. The combination of dynamic binding and
dynamic typing is particularly problematic for optimization since it postpones all dispatch
decisions until runtime, thereby eliminating most benefits of static compilation.

This dynamism makes programming in Python a joy, but generating optimal code a
nightmare. Yet while the presence of such abundant dynamism makes traditional static
optimization impossible, in most programs, there is surprisingly little dynamism present.
For example, in most Python programs:

1. all class and function objects are defined exactly once

2. class inheritance relationships do not change at run time

3. methods are not added after a class object has been created

4. most expressions have exactly one type; the vast majority of those that have more than
one type have only a few types

The flip side is that what little dynamism a particular program makes use of is often
absolutely vital.

I have developed a type inference algorithm for Python that is able to resolve most
dispatches statically. This algorithm is based on Ole Agesen’s Cartesian Product Algorithm
for type inference of Self programs. I have built a type inferencer for Python based on this
algorithm called Starkiller.

Starkiller’s type inference algorithm works by constructing a dataflow network for types
that models the runtime behavior of values in an input program. Of course, since Starkiller
only has access to information available at compile time, it must make conservative approx-
imations. This means that Starkiller will occasionally infer overly broad type sets for an
expression, but it also means that it will never fail to infer the existence of a type that
appears at runtime.

Each variable or expression in the input program is modelled by a node that contains
a set of possible types that expression can achieve at runtime. Initially, all sets are empty,
except for constant expressions, which are initialized to contain the appropriate constant
type. Nodes are in turn connected with constraints that model data flow between them. A
constraint is a unidirectional link that forces the receiving node’s type set to always have at
least the elements of the sender node’s type set. In other words, types flow along constraints.

To avoid both loss of precision from merging types in function bodies and an exponential
growth in analysis time required, Starkiller takes the cartesian product of the list of argument

3

type sets seen by any function call. The result is a list of argument lists where each argument
list contains exactly one type for each argument. Starkiller performs analysis on function
bodies for each of these monomorphic argument lists, caching the results so they can be used
at other call sites. This ensures that polymorphic function calls do not pollute the analysis
of functions called later in the call chain.

In much the same way, Starkiller deals with class instances by maintaining polymorphic
state describing the instance’s attribute types at the instance construction site. Taking the
cartesian product of this state allows us to generate monomorphic instance states that flow
from a instance definition node. These monomorphic instance states are immutable; when
they encounter a setattr instruction, they do not change their own state, but pass the request
back to their polymorphic parent who then changes its state and generates new monomorphic
instance state types as appropriate.

The key idea behind Starkiller is that it never removes or retracts type information.
At any point in time, an expression’s node’s type set accurately, but perhaps incompletely,
describes the types that expression will observe at run time. This monotonicity ensures that
Starkiller will eventually converge on a final type state of the entire program.

The last piece of the puzzle is describing how external types interact with the type
system. Starkiller provides a mini-language that allows extension type authors to describe
the type behavior of their extensions. These descriptions are used during inference to model
the run time dataflow. Since most extensions are quite simple from a type perspective,
these descriptions tend to be short and simple. For example, the str type constructor takes
any object and returns a string instance (possibly calling the object’s __str__ method if it
exists).

2 Introduction

Starkiller’s TI algorithm is designed to take as input a Python source program and generate
as output a declaration of what set of types each expression in that source program will
achieve at runtime. There are two unexpected features of Starkiller’s output that bear
mentioning. The first is that each function and method in the declaration will repeated
such that each copy is specialized for a particular sequence of monomorphic argument types.
The second feature is that a single class may produce more than one class instance type
after construction. These features are artifacts of the manner in which Starkiller deals with
parametric and data polymorphism respectively. Nevertheless, they are useful artifacts since
they naturally suggest particularly efficient compilation strategies.

From a type inference perspective, Python is a large and complex language. In contrast
to other languages that rely heavily on type inference for performance, such as Eiffel, Haskell,
or the many variants of ML, Python was designed with little thought as to how the language
semantics would hinder or help type inference. Instead, Python’s semantics evolved over
several years in response to feedback from a community of skilled practitioners. Thus, while
languages like Haskell suffer occasional design flaws that had to be imposed specifically
to make type inference easier, Python makes no such compromises in its design, which

4

only makes Starkiller’s job that much harder. One example of type inference dictating
language development is how Haskell forbids the polymorphic use of functions passed as
arguments because the Hindley-Milner type inference algorithm that Haskell relies upon
cannot handle such nonlocal usage. This limitation stems directly from Hindley-Milner’s
focus on incremental inference rather than whole program analysis.

While Starkiller’s TI algorithm can analyze a large subset of the Python language, there
are some language constructs that it cannot presently handle. Programs that use these con-
structs are rejected by the inferencer. Most unhandled constructs have a known algorithm
for type inference but have not been implemented due to lack of time. There are, however,
several language features that remain unimplemented because we do not know how to per-
form type inference in their presence. These features introduce new code into the system
at runtime and thus necessarily render static type inference impossible. These features are
dynamic module loading, and the functions eval and exec. In practice, most programs that
would benefit from static type inference and compilation do not make use of these features,
so their exclusion from Starkiller is of little concern. Nevertheless, we close by discussing
techniques that may one day allow Starkiller to support these features.

Like Agesen [1], we necessarily take an operational approach in describing Starkiller’s
TI algorithm. We thus forego mathematically intensive descriptions of the denotational or
operational semantics in favor of simpler step-by-step descriptions of what the TI algorithm
does.

To ease exposition, we begin by describing Starkiller’s TI algorithm for the most basic
language features: assignments, function definitions and calls, and the object system. We
then examine the TI algorithm as it relates to more advanced but peripheral features of
Python, such as generators and exception handling. Having completed a thorough descrip-
tion of how Starkiller’s TI algorithm works for pure Python code, we then turn our attention
to Starkiller’s foreign code support and review how Starkiller integrates the analysis of for-
eign code extensions into its analytic framework. We explore the subject in some detail by
examining how Starkiller handles the built-in functions and types. Finally, we review the
most serious of Starkiller’s problems and limitations.

3 Core TI Algorithm

The core idea behind Starkiller’s type inference algorithm is to find concrete types in the
program source and then propagate them through a dataflow network that models the dy-
namics of runtime data transfer. Concrete types are those types that are actually created
at runtime, as opposed to an abstract type that is either never created (such as an abstract
base class) at runtime or that is a model for any number of types (as in Hindley-Milner
type inference). Because Starkiller deals exclusively in concrete types, it must have access
to the entire input program source at once. In other words, it must perform whole program
analysis rather than incremental one module at a time analysis.

Traditionally, whole program analysis techniques have been looked down upon compared
to their incremental cousins. However, as the modern computing environment has evolved,

5

many of the reason for favoring incremental analysis techniques have evaporated. In part due
to the open source movement, we live in a world where source code is universally available.
Even large commercial libraries ship as source code. The vast majority of applications
that benefit from static compilation and type inference have all their source code available
for analysis at compile time. For those limited cases where programs must integrate with
pre-compiled libraries, the mechanism Starkiller uses for interfacing with foreign code (see
Section 5) can be readily adapted.

Starkiller’s type inference algorithm is flow-insensitive, meaning that it assigns types to
variables in the input program source. In contrast, flow-sensitive algorithms assign types to
individual variable accesses. In theory, flow-insensitive algorithms are less precise than their
flow-sensitive counterparts. However, they are also much simpler to implement. To see how
flow-insensitivity can hamper precision, consider the code in Figure 1. The variable num is
assigned an integer value and then later a floating point value. Flow-insensitive algorithms
like the one Starkiller uses combine both of these writes together; consequently both reads of
num in the calls to doSomething see num as having a type set of integer, float. A flow-sensitive
algorithm would have been smart enough to segregate the two writes so that the first call
to doSomething would see num as having a typeset of integer while the second call would
see num as having a type set of float. The increased precision has obvious implications for
generating faster code.

num = 4 # an integer
doSomething(num)
num = 3.14159 # a float
doSomething(num)

Figure 1: The trouble with flow-insensitive analysis

Starkiller could be augmented to perform flow-sensitive analysis by converting input
source programs into Single Static Assignment (SSA) form. In this form, variables are sys-
tematically renamed so that each read corresponds to exactly one write. Another approach
would involve calculating the set of reachable definitions at every variable read point in the
program. Starkiller does not use either of these approaches because they only solve trivial
cases like the example shown in Figure 1 while being unable to handle more serious sensi-
tivity precision losses. These algorithms are unsuitable for handling anything more complex
than multiple writes to the same variable in one scope. Yet the only way that problem
can occur is for programmers to reuse the same variable for different purposes. Introducing
significant costs simply to provide for better inference of “bad” code is untenable. Moreover,
neither SSA nor reachable definitions can handle attribute accesses easily, especially not in
the presence of threads, generators, or continuations. The real benefit of flow-insensitivity
is freedom from having to care about time.

6

3.1 Nodes and Constraints

Starkiller’s type inference algorithm works by constructing a dataflow network for types
that models the runtime behavior of values in an input program. This dataflow network
consists of nodes linked together by constraints. Of course, since Starkiller only has access
to information available at compile time, it must make conservative approximations. This
means that Starkiller will occasionally infer overly broad type sets for an expression, but it
also means that it will never fail to infer the existence of a type that appears at runtime.

Each variable or expression in the input program is modelled by a node that contains
a set of possible types that expression can achieve at runtime. Initially, all sets are empty,
except for constant expressions, which are initialized to contain the appropriate constant
type. Nodes are in turn connected with constraints that model data flow between them. A
constraint is a unidirectional link that forces the receiving node’s type set to always contain
at least the elements of the sender node’s type set. In other words, constraints impose a
subset relationship between the pairs of nodes they connect. As a result, types flow along
constraints. When a node receives a new type, it adds the type to its type set and promptly
dispatches that type to all other nodes connected to it. The algorithm continues until type
flow has stabilized.

The preceding discussion raises a question as to how different elements in input program
source code generate nodes and constraints. We examine the simplest case, an assignment
statement presently and defer more substantiative cases for the following sections. Consider
the assignment statement x = exp which binds the expression exp to the name x. Starkiller
processes this statement by building a node for x if one is not already present and building
a constraint from the node corresponding to exp to the node corresponding to x. That
constraint ensures that any types in exp’s type set eventually propagate to x’s type set.

x = 3
y = x
z = y
z = 4.3

Figure 2: Assignment in action.

As a further example, consider the source code in Figure 2 and the corresponding con-
straint network shown in Figure 3.1. Initially, Starkiller creates nodes with empty type sets
for the variables x, y, and z. It also creates nodes for the constant expressions 3 and 4.3.
However, those two nodes have type sets that consist of either the integer type or float type
respectively. The assignments indicated dictate that Starkiller place constraints between 3
and x, x and y, y and z, and 4.3 and z. As a result, once processing has completed, the type
set for nodes x and y will contain exactly one element: the integer type. The type set for
node z will contain two types: the integer type and the float type.

It is important to realize that there are a variety of nodes, each with different behavior.
The simplest nodes are variable nodes whose is behavior is as described above. There are

7

Figure 3: Constraint network for code shown in Figure 2

Constant:3

x

y

z

Constant:4.3

more complicated nodes for function calls, function definitions, class definitions and instance
definitions. Another important feature of the system is that constraints can be named.
This allows a function call node to distinguish between constraints representing different
arguments, for example.

3.2 Functions

We now examine how Starkiller performs type inference for code that defines or calls Python
functions. But first, we review Python semantics regarding function definitions and calls. In
Python, functions are first class objects and function definitions are imperative statements
that are evaluated at runtime. Consequently, the definition shown in Figure 4 serves to create
a function object and bind it to the name “factorial” when encountered at runtime. Because
definitions are evaluated at runtime, the same function definition can easily be instantiated
into different function objects. This point is illustrated by the source code in Figure 5.
Successive calls to makeAdder will return distinct function objects since the definition of add
triggers the creation of a new function object for each invocation of makeAdder. Python
functions can have default arguments; any such expressions are evaluated once at function
definition time. This feature has important implications for type inference.

Upon encountering a function definition, Starkiller creates a special function definition
node that encapsulates the code associated with the definition. It also creates a variable node
representing the function’s name and a constraint from the definition node to the name node.
The definition node generates function type objects which then become part of the variable
node’s type set. In this way, Starkiller models the runtime behavior of function definition as
assignment of a newly created function object. Starkiller also creates constraints from any
default argument expressions to the definition node, so that as information about the types
of default arguments reaches the definition node, it can produce updated function types that
incorporate that information.

8

def factorial(n):
if n == 1:

return 1
else:

return n * factorial(n − 1)

x = factorial(5)
y = factorial(3.14)

Figure 4: The factorial function.

def makeAdder(a):
def add(b):

return a + b
return add

Figure 5: A nested function.

When Starkiller finds a function call, it creates a special function call node. It then
creates a constraint from the variable node associated with the name of the function being
called to the call node. It also creates constraints from each of the nodes associated with
the actual arguments to the call node as well. Finally, Starkiller creates a constraint from
the call node to wherever the return value of the function call lies. This constraint is used
by the call node to transmit the type of the function’s return value.

The call node responds to incoming types by taking the Cartesian product over the
list of sets of callee types and argument types. The result is a list of monomorphic types
where the first entry is the type of a callee and successive entries represent the argument
types. For each monomorphic entry, the function call node attempts to find a matching
template. Templates are unique instantiations of the node and constraint graph associated
with a single function’s source code. Each template associates a monomorphic type for each
of the function’s arguments. Thus, for any function, there could be many templates that
differ only in the argument types. Templates are shared across all call sites of a particular
function, so each function in principle only needs to be analyzed once for each monomorphic
call signature. If the call node can find a matching template, it adds a constraint from that
template’s return node to itself so that it can propagate return value types to its caller. If
no template exists, the call node creates one, building a set of nodes and constraints.

Starkiller does slightly more than the preceding discussion indicates in order to properly
handle lexical scoping. Because nested definitions have access to variables defined in their
enclosing scopes, function types must depend on the types of out-of-scope variables referenced
by the function. In other words, function types must effectively include the types of all
variables they reference that they do not define. For the example code in Figure 5, this

9

means that the type of the function add incorporates the type of the argument n. One
benefit of this approach is that function types are completely self contained: they include all
information needed to perform inference at a function call site. There are no hidden “lexical
pointers” that connect function calls back to the original defining context.

In this way, out-of-scope variables are treated like default arguments. When analyzing
functions, Starkiller keeps track of which names are read by each function and which names
are written to. This information is used to statically determine a list of out-of-scope de-
pendencies for each function. Starkiller compiles these nonlocal dependencies recursively,
so a if a function’s lexical parent does not define a nonlocal name that function references,
then that name is nonlocal for the parent as well. At function definition time, the types of
all nonlocal names are immediately available. Starkiller adds constraints from each nonlocal
name to the function definition node, which in turn produces function types that incorporate
the types of nonlocal names being referenced. This process is somewhat akin to a common
optimization technique for functional languages known as lambda lifting.

The inference algorithm described so far has difficulties analyzing recursive functions.
Consider the factorial function shown in Figure 4. When Starkiller encounters the definition,
it creates a definition node and a name node and links them together. However, because
factorial is recursive, it references itself and lists its own name as a nonlocal dependency.
Starkiller thus adds a constraint from the name node for factorial to its definition node.
Since factorial is a nonlocal name for itself, the function type generated by the definition
node must include the type of factorial itself. But now we have generated a cycle. The
definition node produces a function type which flows to the name node and then back to the
definition node as a nonlocal reference type. As a result, the definition node performs CPA
on its list of nonlocal and default argument type sets and produces a new function type that
includes that old function type. Rinse, wash, and repeat.

Starkiller solves this problem by detecting the cycle and stopping it. When a definition
node sees a new type being sent for a nonlocal name or default argument, it checks to see
if that type or any type encapsulated by it is one of the types the definition node itself
has generated. If the incoming type contains a type generated by the definition node, there
must be a cycle, and the definition node ignores it. This architecture is designed to alleviate
the problems that plagued Agesen’s CPA, namely an inability to precisely analyze recur-
sive functions without becoming vulnerable to recursive customization. While not perfect,
Starkiller’s approach has significant improvements over the heuristics Agesen employed to
detect and stop recursive customization.

3.3 Classes and Objects

Having explored how Starkiller handles functions, we now turn our attention to how it
handles Python’s object system. As before, we briefly review Python’s semantics before
diving into Starkiller’s type inference algorithm.

Classes in Python are defined using an imperative statement in much the same way
functions are. Within a class body, variables defined are class specific, that is, they are
accessible by all instances of the class. Functions defined inside the class are methods. Unlike

10

a function definition, the body of a class definition is executed when the class definition is
first encountered. The result of a class definition is the creation of a new class object and
the binding of that object to its name. Once created, a class’ methods and attributes can be
modified or added, even after instances have already been created for it. Class definitions
explicitly include an ordered list of base classes. This list can be modified at any time.

Class instances are created by calling the class as a function. This produces an instance
as a result and also calls the class’ constructor method with the calling arguments as a side
effect. As with classes, instances can have attributes added or modified at any time simply
by assigning to them. Attribute references using the self parameter are first resolved in
the instance, then in the class, and then in the class’ base classes. Attribute writes always
occur in the instance; writing to the class or one of its base classes is permitted via explicit
naming (i.e., self.age = 3 for instance attributes versus self.__class__.age = 3 for
class writes). When an attribute lookup fails for the instance and the class, the base classes
are perused in the order indicated by a depth first traversal of the inverted base class tree.
Attribute accesses in the source code generate get attribute and set attribute nodes in the
constraint network. These nodes have constraints to them indicating what object should be
queried, and, for set attribute nodes, what the new value should be. The attribute name is
a constant string encoded upon node construction.

Upon encountering a class definition, Starkiller creates a variable node to represent its
name, a new class definition node to generate appropriate class types, and a constraint
linking the two together. It also creates constraints to the definition node from the nodes
corresponding to the listed base classes as well as any nonlocal references. The definition
node maintains type sets for each base class and nonlocal reference and takes the Cartesian
product of those sets to generate a list of monomorphic types. These monomorphic types
are packaged as class types and dispatched from the definition node. Reading or writing
a class attribute is simple: when a class type reaches a get attribute node, the attribute
type can be read directly from the class type. If it doesn’t exist, then no type is returned.
When a class type reaches a set attribute node, its state does not change. Class types are
immutable and once created cannot be modified. Instead, they contain a reference back to
the definition node that produced them. Rather than change their state, they inform the
definition node of the state change, and if necessary, the definition node generates new class
types incorporating that change which eventually propagate throughout the system.

When a class type reaches a function call node, it creates an instance definition node
at the same place. Much like the class definition node, the instance definition node acts
as the repository of the instance’s polymorphic type state. The instance definition node
generates monomorphic instance types that contain a single type for every attribute defined
by applying the cartesian product algorithm over its polymorphic type state. It also creates
a new function call node to represent the call to the class constructor, and adds constraints
from the original function call to this new one to simulate argument passing. The class
constructor is extracted using a get attribute node so that if later information adds a new
constructor or new base class, all possible constructors will be called.

Because instance attributes shadow class attributes, precision can be lost. For example,

11

a common design scenario is to encode the initial value of an attribute as a class variable,
but have instances write newer values as instance attributes directly. This technique can
make the initialization logic simpler and cleaner since the instance always has a correct
value available.

When an instance type reaches a get attribute node, the attribute name is looked up
in the instance type itself, its class type, and its’ class type’s base classes. All types found
as a result of these lookup operations are returned to the get attribute node. This parallel
attribute lookup suggests a possible loss of precision since, at most, only one lookup result
will be passed to the get attribute node at runtime. However, this loss in precision is
necessary to properly deal with the fact that instance attributes shadow class attributes
with the same name. However, because attribute writes must be explicitly qualified, writes
do not impose a precision loss. When an instance type reaches a set attribute node, it informs
its instance definition node of the resulting type change, but it does not change. Like class
types, instance types are immutable. Note that Python classes can override the attribute
read and write functions with custom methods. This means that, in addition to the process
described above, Starkiller must create a call for the __getattr__ method whenever that
method exists and the attribute cannot be found. Calls to the __setattr__ method must
be invoked whenever it exists as well.

Instance method calls require some explanation. Python parses a method call like
inst.method(1,2) into an AST that looks something like CallFunction(GetAttribute(inst,
’method’), (1, 2)). In other words, a bound method is first extracted from the instance using
ordinary attribute lookup and that bound method object is then called just like a normal
function. Bound methods are first class objects, just like functions. The instance attribute
machinery in Starkiller packages both the instance type and the method type together into a
bound method type that is returned to the get attribute node. This behavior only happens
when the attribute name is found inside a class or base class and that resulting attribute
type is a function.

4 Advanced Language Features

4.1 Operators

Python allows individual classes to define methods that specify the behavior of overloaded
operators. For example, a class that wanted to implement the addition operator would
define a method named __add__ that takes the instance and the other object being added as
parameters. While operator calls internally reduce to method calls, their semantics introduce
sufficient complexity so as to preclude treating them as mere syntactic sugar for method calls.
This complexity stems from Python’s coercion rules, and their long storied history of informal
specification, special casing, and evolutionary change.

These coercion rules specify which method will actually be executed for a particular
operator call given a pair of operands. For an operator op the coercion rules specify selection
of a method named __op__ defined in the left operand. If such a method is not defined, the

12

rules mandate that a method named __rop__ defined for the right operand be used, where the
r prefix indicates right associativity. If that method is undefined, the implementation throws
a NotImplemented exception. There are further complications, such as special case rules for
operator precedence of new style classes where the right operand is an instance of a proper
subclass of the left operand. In-place operators (e.g., +=) introduce further complexity since
a method __iop__ is searched first and used without coercion if found, but, if that method
is not defined, execution falls back to a combination of the standard operator (__op__) and
assignment. A complete copy of the coercion rules in all their hideous soul devouring glory
can be found in Section 3.3.8 of [10].

Starkiller handles operator calls by creating an operator node that has constraints from
the operand types and that generates the result type for that operation. Internally, the
operator node performs CPA on the operand types just like a function call node, but unlike
a function call node, it enumerates the resulting monomorphic operand type lists and uses
the coercion rules to determine which method from which operand should be called for each
monomorphic pair of operands. Having found the method, it builds a get attribute node to
extract the correct method from the correct operand and a function call node to call that
method so as to determine the result type of the operation. Since the result types of all
of these function call nodes point back to the operator node using a named constraint, the
operator node can easily generate a return type for the value of the operation expression.

4.2 Exceptions

Python provides structured exceptions not unlike those found in Java and C++. One no-
table difference is that functions and methods do not (and can not) declare a list of excep-
tions they can potentially throw. Exceptions can be any Python object, although exception
comparisons in the catch clause of try/except statements are based on class and subclass
comparisons. In other words, an exception will be caught by an exception handler only if it
is a an instance of a class or subclass of the handler’s exception target.

Starkiller’s type inference algorithm refuses to deal with exceptions in any way. This is
because exception handling is complex and delicate and in many ways, represents a corner
case in language implementation. In addition, with one small exception, exception handling
provides no useful type information to a flow insensitive algorithm. Traditionally, Python
exceptions have been understood as a slow mechanism for transferring control. This ex-
perience is also true in C++, Starkiller’s target language. As a result, exception handling
invariably occurs outside the critical path, and thus sees little if any benefit to aggressive
optimization.

The one instance where exception handling provides necessary type information to a
type inferencer is for programs that make use of named exceptions. Such programs use a
variant of the except clause in a try/catch statement to bind the captured exception to a
local variable and make it available to exception handler. Starkiller cannot perform complete
type inference on programs that use this feature since it does not process type information
for exceptions. One simple alternative would be to use the type of the exception handler’s
target as a surrogate for the type of the exception actually caught, but this approach would

13

violently break language compatibility. The crux of the problem is that the exception object
that must be bound locally is generated in a later call frame, and we cannot determine that
without exerting significant effort to track the movement of exception objects across call
frames.

While the current implementation of Starkiller does not process exceptions, later versions
easily could using the strategy outlined below. Doing so would involve using the static call
graph, of which Starkiller has ready access to a conservative approximation. Each function
call node already maintains constraints to itself from the return nodes of each template it
makes use of. Exception handling could work in much the same manner, where function and
method bodies maintained a hidden variable to record the types of all uncaught exceptions
and passed them back to their callers using a named constraint in the same way that they
pass return values to their callers.

In order to deal with the fact that a given function can contain multiple possibly nested
try/except clauses, we introduce an exception node for each of them and build constraints
between them over which exceptions flow based on their scoping relationships. Function
call nodes have named constraints emanating from themselves to the most closely scoped
exception node. When they encounter an exception type from one of their callee templates,
they pass it along to the nearest exception node, which may make it available in a local
binding if the exception matches the target or may propagate it onward to the next outer
exception scope. This design supports all Python exception semantics while ensuring that
inference remains complete, even in the face of named exceptions. Its major drawback is
that precision for exception expressions may be reduced in some cases, but it should be more
than adequate to improve upon the current Python implementation’s performance.

4.3 Iterators and Generators

Recent Python releases have introduced iterators [11] and generators [8] into the language.
Their design was heavily influenced by the Sather [7] and Icon [4] programming languages,
where such objects play a vital role. Iterators are objects that follow a standard protocol
whereby they provide clients with a stream of intermediate values using a next method and
signal the end of iteration by raising a StopIteration exception. For loops act naturally
over iterators. Generators are a particular type of iterator object that make use of the
yield keyword. They allow functions to naturally suspend their entire execution state while
providing intermediate values to their callers without terminating.

As with exceptions, Starkiller provides no support currently for generators and iterators.
Due to the tight relationship between iterators and exceptions, support for the latter ne-
cessitates support for the former. Nevertheless, once Starkiller’s type inference algorithm
properly supports exceptions, it can be easily extended to support iterators and generators.
Iterator support can be added by modifying how Starkiller analyzes for loops to check for
and make use of __iter__ and next methods when present. Generators can be supported
by recognizing functions that contain the yield keyword and ensuring that any calls to them
result in a generator object that implements the iterator protocol. Each invocation of the
next method should be equivalent to executing the body of the generator, with the yield

14

statement being used to return values to the caller instead of the return statement as used
in traditional functions.

4.4 Modules

The Python module system allows statements of the form from email.encoders import encode_base64

and import socket. When using the former, objects named on the import statement are
made immediately available to the importing module after the import statement has exe-
cuted. When using the later form, module objects are bound to a variable with their name. A
module’s contents can be accessed using named attributes, such as socket.gethostbyname.
Starkiller reflects these semantics by representing each module with a type. Note that the
term module can refer to a Python source file or an extension module with a corresponding
Starkiller type description.

Like function types, module types have templates associated with them, but unlike func-
tion types, there is only one template associated with each module type. Upon encountering
an import statement, Starkiller locates the needed module and checks whether it has been
analyzed before. Since Python caches module imports in order to ensure that each module
is executed only once, Starkiller replicates this behavior by only analyzing a module once
and thereafter referencing its template. For named imports, where some or all of the mod-
ule’s contents are imported into another module, Starkiller creates a variable node in the
importing module for each name being imported. It then builds constraints from the original
variable node in the imported module template to the newly created variable node of the
same name in the importing module.

5 Foreign Code Interactions

Because it must perform type inference on programs that use both native Python source
code as well as Python extensions written in other languages (typically C, C++, or For-
tran), Starkiller is faced with a serious problem. Moreover, these external languages and the
APIs they use to interact with Python are sufficiently complex so as to make type inference
infeasible. In order to resolve this impasse, extension module authors are expected to write
simple descriptions of the run time type behavior of their modules. These External Type De-
scriptions are written in a language that Starkiller specifically provides for just this purpose.
In this section, we begin by exploring the External Type Description language. We conclude
by examining the external type description for one particular module, the __builtins__

module, which defines all of Python’s core types and functions.

5.1 External Type Descriptions

External Type Descriptions are Python classes that subclass an ExternalType class pro-
vided by Starkiller. That base class provides its subclasses with a stylized interface into

15

Starkiller’s internals. There are also ExternalFunction, ExternalMethod and ExternalMod-
ule base classes provided to complement ExtensionType. The power of the extension type
description system is difficult to understate; it allows extension authors to “plug into”
Starkiller’s type inference machinery and make their own code part of that machinery. The
relationship between Lisp and its macro system is analogous to the relationship between
Starkiller and its external type description system.

Extension type description authors write description classes that describe the run time
type behavior of their extension types. These classes are subclassed from ExtensionType
and can use its getState and addState methods to manipulate the polymorphic state of
that particular instance of the extension type. These description classes include methods
that describe the behavior of the actual methods implemented by the extension type. For
example, when an extension type instance’s append method is called, Starkiller will invoke
the corresponding method in the extension type to determine the method call return type.
The append method is presented not just with the monomorphic argument types of the
method call, but also the result node that it will be directed to and the monomorphic state
of extension type instance. The method can retrieve or add new type state to the extension
type or any other type visible to it and it can also use the callFunction method to simulate
arbitrary function calls. This feature can be used to model extension functions that return
result types that depend on calling one of their arguments, such as map. In fact, the method
can apply arbitrary transformations to the constraint network.

External types are treated in much the same way as class instances. In particular,
their internal state is described completely by a mapping from state names to polymorphic
variables. For example, if an external list type has method names append and insert, it
will have a state element for each with their corresponding name and a type set consisting
of a single external method type. As with class instances, when external type instances
reach a get attribute node and are asked for a method, they generate a bound method
type that encapsulates both the external type instance as well as the method name. When
this bound external method type reaches a call function node in the network (i.e., when
someone attempts to execute an external type’s method), the corresponding extension type
method is called and asked to supply a return type for the operation. In lieu of supplying
a return type, the method has the option of creating a link to the destination node for the
return type so that it can be filled persistently. Polymorphic external type instances are
associated with instance definition nodes that generate appropriate monomorphic external
type instance state types that propagate through the network. Because their architecture
mirrors that of native Python classes, external types see the same level of precision that
native Python classes do.

5.2 The builtins Module Type Description

Python includes a special module called __builtins__ that encompasses all the basic types
and functions accessible by default. It includes named constructors for the basic types of
machine integers, double precision floating point numbers, long integers, lists, tuples, and
dictionaries. These basic datatypes are completely pervasive in all real Python programs; in

16

fact, certain syntactic constructs use them implicitly. For example, tuple unpacking happens
automatically in assignment statements like a, b = foo(). Moreover, a class’ base class
list is represented as a tuple of classes stored in an attribute named __bases__. In order
to properly analyze programs using these basic types, Starkiller includes an external type
description for the __builtins__ module. Those type descriptions will be described briefly,
both to illustrate the issues involved in writing a proper external type description and to
showcase the limits of inferencer precision when using basic datatypes. It is important to
note that for a given external type, there can be many different external type descriptions
that differ significantly in precision and run time inferencer performance.

Contrary to their name, Python lists are vector like data structures capable of holding
any type of element while supporting fast appending at the end and constant time element
writing and retrieval. Starkiller provides an external type description for lists that maxi-
mizes precision in the common case while degrading gracefully in the face of operations that
necessitate imprecision. The crux of the problem is that while we want to be able to asso-
ciate precise types with individual slots of a list, there are some list operations that modify
the lists’ type state in a way that is impossible for a flow insensitive inferencer to trace.
For example, consider the case of a list initialized with the statement L = [1, 2.2, z].
Starkiller has enough information on the list to determine that the type of the first element
of the list will be an integer. However, if at some later point in the program, L.sort() is
called, we can no longer make that guarantee since sort swaps the list’s elements in place.

Consequently, the external type description for lists maintains a state variable indicating
whether that particular list has been “tainted” by such operations. The list keeps a state
variable which describes the type set of each slot and an extra state variable describing the
type set of all slots combined. Reading from a particular slot of an untainted list yields the
type set of that slot, while a slot read from a tainted list yields the combined type of all
slots. Lists initially are untainted, but can become tainted when they become subject to a
tainting operation, like the sort method described above. When that happens, additional
types may be propagated through the constraint network to reflect the fact that previously
single slot reads may actually refer to the contents of any slot. This protocol works well
with CPA because it never violates the monotonicity principal: the set of types produced by
reading a list item is always (partially) correct, but may not always be complete. Adding
types is safe, but removing them is not.

Tuples use a very similar mechanism, namely maintaining state for each element. Of
course, since tuples are immutable, they need not deal with tainting operations. Dictionar-
ies use a similar method to associate key and value types together. Astute readers will notice
one serious problem with the scheme described above: Starkiller deals in types, not values,
but in order properly associate individual list indices with unique types, it must necessarily
keep track of values. In general, Starkiller tracks types, however, in a limited number of
special cases, it will actually process constant values. The two special cases are attribute
names and indexing operations. Failing to provide special case value handling of constant
attribute names would make Starkiller so imprecise as to be useless: the type of any attribute
referenced would have to be equivalent to the combined type set off all attributes. Indexing

17

using the __getitem___ and __setitem__ methods plays just as serious role. Without spe-
cial case support for constant index expressions, operations involving implicit tuple packing
and unpacking would lose a great deal of precision. Unfortunately, such operations are ut-
terly pervasive: they are simply too convenient not to use. Python code generally includes
both constant and variable forms of both attribute access and indexing. Thus we see expres-
sions like x.attr and y[2] in addition to expressions like getattr(x, userInput()) and
y[z*2 - 1].

The challenge for extension type description authors lies in designing extension types
descriptions that can make good use of constant information when available while degrading
gracefully in the face of variable attribute and index accesses, all the while maintaining the
monotonicity invariant that Starkiller relies upon.

6 Known Problems and Limits

6.1 Eval, Exec, and Dynamic Module Loading

The most glaring deficiency in Starkiller’s type inference algorithm is its inability to handle
dynamic code generation. Starkiller needs to be able to see all the code that could be
executed at runtime in order to perform complete inference. As a result, constructs such as
eval and exec which evaluate and execute source code potentially made available only at
run time are problematic. For the same reason, Python’s module system can theoretically
be used to import code that does not exist at compile time since import statements are
evaluated only at run time.

While Python offers several methods to execute code generated at runtime, in practice,
eval, exec, and module imports that cannot be resolves statically are rarely used. In part,
this is because dynamic code generation introduces security risks for the same reason that
it makes static type inference difficult: code that has not been audited and verified prior
to distribution cannot be trusted, especially if that code could have been contaminated by
untrusted user data. Another reason is that code generated dynamically often runs slower
than comparable static code. This slowdown is due to the fact that the dynamically generated
code must be byte compiled before execution, while static code is byte compiled only once
on application startup and then cached for successive executions.

Finally, dynamic code generation is infrequently used in the Python world because Python
makes it easy to accomplish the same ends as achieved with dynamic code generation us-
ing other means. For example, in order to convert the string ’’1’’ into the corresponding
integer, one could use the eval function or one could simply use the int function. The
latter has the benefit that its return value will always be an integer should it return at
all. In addition, the developer can rest secure in the knowledge that no extraneous code
can be invoked by a call to int, regardless of the value of the input string. As another
example, consider the case of a developer attempting to read an attribute from an ob-
ject instance where the attribute name is derived from run time data. Solutions to this
problem using eval such as eval(‘‘instance.’’ + userInput()) compare poorly in sim-

18

plicity, performance, and aesthetics when compared to more traditional solutions such as
getattr(instance, userInput()) or even instance.__dict__[userInput()].

To determine how serious a problem Starkiller’s inability to support dynamic code gen-
eration may be, I performed a survey of the library code written in Python that was shipped
with release 2.3 of Python. I examined all instances where eval and exec where used and
recorded the difficulty involved in working around their use. The results are shown in the
following table. One immediate observation is that eval and exec are infrequently used:
there were less than 25 occurrences of both functions in over 123,000 lines of source code.
Moreover, many of those occurrences can be easily removed in favor of alternative facilities
afforded by the language. All of the remaining uses occur in programs or libraries that are
simply not suited for Starkiller’s target audience. These programs include heavily interactive
applications like the Python Debugger and the interface to libreadline in addition to more
esoteric applications, like the compiler infrastructure.

19

bdb.py, pdb.py
Debugger support
Not applicable for Starkiller. Implements run time support for the Python debugger,
and uses eval to modify variables at run time after stopping at a breakpoint.

dumbdbm.py

Dumb DBM Clone
Trivial to work around. Uses eval to cheaply parse string into three numbers. Secu-
rity hazard since that allows arbitrary code execution.

gettext.py

Internationalization and Localization support
Trivial to work around using named functions.

gopherlib.py

Gopher protocol support
Easy to work around using dictionaries instead of module variables as a static map-
ping, or, alternatively, a call to globals.

mhlib.py

Unix Mail Handling
Not applicable to Starkiller since eval is only used in testing code.

os.py

Generic Operating System interface
Moderately difficult to work around. eval is used to support conditional compilation.
eval could be eliminated if os.py was better modularized with autoconf, but this is
not for the faint of heart. Alternatively, globals could be used.

random.py

Random number generator
Not applicable to Starkiller since eval is only used in testing code.

reconvert.py

Conversion between old and new regular expressions
Not applicable to Starkiller since this code is only used during development.

20

rexec.py

Deprecated restricted execution framework
Very difficult to work around, but this code is going to be removed soon since it is
terminally insecure.

rlcompleter.py

Word completion for libreadline
Not applicable to Starkiller since this code is only used in interactive applications.

tzparse.py

Experimental parser for timezone specifications
Trivial to work around. Uses eval to parse simple strings into numbers.

warnings.py

Generic warning framework
Moderately difficult to work around. Uses eval to check if user supplied names are
defined. Could probably be replaced with dictionary mapping or a much safer call to
getattr.

compiler/ transformer.py

Experimental Python parser
Moderately difficult to work around. Uses eval to parse literals in a way that precisely
matches the C implementation of Python’s parser. eval could probably be replaced
if a more detailed literal parser was written in Python.

logging/ config.py

Configuration parser for logging system
Moderately difficult to work around. Uses eval to map class name strings to the
corresponding class objects. eval could probably be replaced by an explicit dictionary
mapping or a call to getattr. This is also a potential security vulnerability allowing
arbitrary code execution.

idlelib/ CallTrips.py, ObjectBrowser.py, PyShell.py
Integrated Development Environment
Not applicable to Starkiller since this code uses eval to support dynamic introspection
and live object modification for an IDE.

21

Despite the problems inherent in supporting dynamic code insertion in a high performance
static compilation environment, Starkiller will eventually support some (perhaps limited)
form of dynamic code insertion. We describe possible implementation strategies presently.
The most immediate problem faced in implementing eval is the need for a parser and inter-
preter or compiler at run time. Once the dynamic code has been parsed and interpretation
begins, other problems quickly emerge. Consider the following possibilities:

1. the evaluated code could call functions with argument types that do not match any
existing template

2. the evaluated code could assign a value with a type not seen before as an object’s
attribute

3. the evaluated code could replace code or data that had previously been assumed to be
constant and thus inlined

The first problem is easily solvable if we mandate that the compiler generate a generic
template for each function and method in addition to whatever specialized templates the
type inferencer indicates are required. Such generalized templates treat all arguments as
polymorphic and perform explicit type checks throughout in much the same manner as the
current implementation of Python does today. Including them imposes no performance over-
head beyond increased executable size. The second and third problems are interrelated and
pose far more difficult challenges. In and of itself, the second problem is not insurmountable
since any data member could easily be replaced with a pointer to new tagged data. The
larger difficulty stems from the existence of (possibly inlined) code throughout the system
that accesses that data.

There are two possible solutions to this problem. One solution would involve placing
layers of indirection so that any code or data that could be modified by dynamically inserted
code could be easily replaced. This would impose a severe performance penalty unless de-
velopers were given some method to declare code “sealed” from further changes. The second
solution requires that Starkiller recompile the entire world image while running whenever
it needs to handle dynamically inserted code. The overhead involved in this recompilation
would be substantial, making it unsuitable for frequent uses of the eval function and prac-
tical for little more than updating modules in the field. However, this recompilation process
is amenable to several optimizations. For example, recompilation might only be used as a
last resort if the evaluation interpreter ran into any of the three problems described above.
In the common case, evaluation would proceed without incident. Once recompilation was
triggered, the resulting world image would be generalized in ways that would make recom-
pilation less likely to be needed again. Another optimization requires that Starkiller track
dependencies between different functions, methods, and data definitions so that it can re-
compile only the parts of the program that are affected by the evaluated code. However,

22

this approach presents further performance challenges since it requires that Starkiller take
full control of inlining away from the target compiler.

In general, the need to perform run time code patching is difficult to reconcile with the
peak performance since very high performance compilation techniques make heavy use of
inlining and other techniques that destroy program modularity. The conflict between high
performance and dynamic code generation is not impossible to reconcile, but it remains quite
challenging.

6.2 Static Error Detection

The standard Python implementation provides a consistent model for handling errors. A
small class of errors, mostly syntactic in nature, is detected by the byte compiler when
a program is compiled or run for the first time. These errors typically abort compilation
or execution entirely. All other errors are detected at runtime and are dealt with using
Python’s exception handling mechanism. In practice, this means that many errors that are
detected statically in other languages, such as calling a function with more arguments than
are expected, become run time errors that are only detected upon execution. This error
handling model poses a problem for Starkiller: what should one do with potential errors
detected statically by the type inferencer?

x = "hi there"
x = 4
y = x + 3

Figure 6: An example of static detection of run time errors.

To illustrate the problem, consider the simple program in Figure 6. This code will compile
and execute correctly in the standard Python implementation without issue. But when
Starkiller analyzes this code, it will conclude that the variable x can have a type of either
string or integer. Since x is then used as an operand for an addition with an integer, Starkiller
cannot blindly invoke the addition without resolving the x’s polymorphism. Because it is
flow insensitive (see Section 3), Starkiller cannot determine that the string value of x will not
be present by the time control reaches the addition expression. Having failed to statically
resolve x’s polymorphism, we must do so dynamically by inserting a run time type check
on x before proceeding with the addition. If x is an integer, then the addition can proceed
without harm. But if x is a string, we have a problem, since the addition operator is not
defined for operand types of string and integer.

What should the type inferencer due at this point? Aborting compilation because an error
is possible would be unwise in this case since we know that the string type associated with
x is a spurious artifact of the type inference algorithm and not something that will hinder
the addition operation. At the same time, we cannot simply ignore the issue since it could
truly be a programmer error. Consider the same case as before, but with the first two lines

23

swapped. That program would compile correctly but would generate a runtime exception
when fed into the standard Python implementation. Python’s inability to statically detect
errors like this as well as simpler errors such as typographic errors in variable names has
been a major complaint from its user base since its inception. That suggests that Starkiller
should make static errors visible to the user so they can check and repair incorrect code.
Unfortunately, doing so would also produce spurious warnings as seen in the first example.
Moreover, due to the effects of templating, the same error may be detected many times,
drowning the user in a sea of meaningless errors with no easy way to separate the spurious
from the legitimate.

The core of the problem is that some of the errors that Starkiller statically detects
represent real errors that the standard Python implementation cannot statically detect while
others represent artifacts of the type inferencer’s imprecision and are completely harmless.
There is no way, a priori, to discriminate between the two. Because Starkiller focuses on
improving run time performance and not necessarily run time safety, it forgoes reporting
statically detected errors such as those described above to the user. However, it does not
ignore possible error cases. Instead, it inserts code to raise run time exceptions as needed
when it statically detects that an error is possible and dynamically determines that an error
has occurred. This approach preserves the standard Python semantics while bypassing the
need to build an extensive error reporting and filtering system. Nevertheless, future research
would be well directed at improving static error detection and presentation to developers.

6.3 Partial Evaluation

Starkiller’s implementation for dealing with attributes is rather inelegant. Essentially, sup-
port for explicit constant attribute names has been hard coded into the type inferencer as
a special case, since the program source contains them directly. A more elegant approach
would have been to treat all attribute accesses like invocations of the getattr function.
Since this function cannot know statically what attribute name it will look up, it returns
the types of all attributes together. Unfortunately, named attribute references are far too
common for this approach to have been practical; its application would have rendered all
non-trivial programs a morass of imprecision. However, it would be desirable to replace
Starkiller’s special case logic for dealing with attribute access with a more generalized par-
tial evaluation framework, since constant explicit attribute access is simply a special case of
partial evaluation. This approach would provide other benefits as well, such as improving
precision when analyzing some common programming idioms.

One such idiom describes how to build a class that deals with many other client classes
without expanding those client classes. It works by implementing one method for each client
class to be examined and uses Python’s introspection features to select the correct method
to call based on one of the client class’ data attributes. For example, consider Figure 7 which
portrays a stereotypical implementation of the Visitor design pattern [2] used to implement
part of a compiler. The compiler defines classes for all possible nodes of an abstract syntax
tree, including nodes to represent constants, if statements, and for loops. If we wanted to
write code that would operate on instances of all those nodes without touching the original

24

classes, we might build a visitor class as shown in Figure 7. This class uses introspection
to determine the class name of any instance presented to it and then uses that name to
construct an appropriate method name to process that instance. This is a well known idiom
in the Python community.

class Constant(Node):
pass

class If(Node):
pass

class For(Node):
pass

10

class visit:
def processNode(self, node):

return getattr(self, ’visit’ + node. class . name)(node)

def visitConstant(self, node):
pass

def visitIf(self, node):
pass

20

def visitFor(self, node):
pass

Figure 7: The visitor design pattern in Python.

Starkiller handles code like this, but not well. Because it performs no partial evaluation,
it assumes that the getattr call can return any value that is an attribute of instances
of the visitor class, when in fact, it can only return attributes whose names begin with
the string “visit”. Starkiller’s conservative assumption leads to imprecision which in turn
hinders performance and increases generated code size since extra type checks and error
handling code must be synthesized to deal with the invocation of other attributes besides
the visit methods. A more general solution would obviate the need to check for impossible
combinations that cannot arise in practice.

6.4 Integer Promotion

Python offers two builtin integer datatypes: a standard “machine” integer that must be at
least 32-bits wide and a long integer that can have unbounded length. Traditionally, these

25

two datatypes were kept distinct and isolated from one another. This meant that when a
machine integer value overflowed, the Python Virtual Machine would raise an OverflowEr-
ror exception. Long integers, of course, cannot overflow since they use arbitrary precision
arithmetic to grow as needed. Starkiller’s problem stems from the fact that recent Python
releases have adopted a change in semantics [12] designed to eventually unify the machine
and long integer types. Newer Python releases now respond to overflow of a machine integer
by silently promoting it into a long integer. The eventual goal of these changes is to eliminate
machine integers completely, but that is not expected to happen for quite some time.

While unifying the two integer datatypes does solve some very real problems in the
language, it introduces a host of new problems for Starkiller. There are four options for
Starkiller to implement Python’s newer integer semantics. The first approach requires that
Starkiller mirror the language definition precisely. The second option would be to implement
sophisticated techniques for range analysis and propagation associated with previous work in
using unboxed integers in higher level languages. The third option would be to uniformly use
long integers everywhere, while the fourth option would be to retain the integer semantics
found in older versions of Python. At the moment, Starkiller uses the fourth option, opting
for high performance and limited implementation complexity at the cost of conformance with
the language specification.

Precisely mirroring the language definition means that machine and long integers remain
distinct types but that all operations that could overflow a machine integer must be checked
at runtime for overflow and promoted to long integers as needed. From a type inference
perspective, this means that all primitive integer operations such as addition and multipli-
cation may return either machine integers or long integers. As a result, almost all integer
variables will be polymorphic since they must hold machine integers as well as long integers.
Making all integer variables polymorphic cripples the performance of generated code by in-
hibiting the use of unboxed arithmetic. The standard Python Virtual Machine does not face
this problem since it uniformly uses boxed integers anyway, and, in any case, it has enough
overhead to mask that caused by integer promotions.

The literature associated with compiler optimization for dynamic languages is full of tech-
niques for partially reclaiming the performance lost to integer boxing [3, 9]. Unfortunately,
many of these strategies necessitate a degree of implementation sophistication that is not
presently available to Starkiller. Recent work on unboxing in statically typed languages [6]
such as Haskell and the ML family of languages may prove more appropriate to Starkiller’s
static compilation model while posing less of an implementation hazard.

In contrast, using long integers exclusively offers somewhat better performance than is
possible with strict conformance to the standard since all integer variables can be at least
monomorphic. Long integers could even be implemented in an unboxed manner, if they were
implemented as a linked list of machine words. In that implementation, long integers would
contain one word of the integer data and a pointer to the succeeding word. For most integers,
the next pointer would be NULL, signifying that this was the last word comprising the
integer. As a result, long integers would be twice the size of machine integers in the common
case and could be stack allocated but would incur extra overhead needed to constantly

26

check if the next pointer was null. This overhead would manifest itself in repeated branch
points inserted into the instruction stream for code that was heavily laden with arithmetic
operations. Excess branching hinders performance by confounding processor pipelining in
modern architectures [5]. Some of this overhead could probably be ameliorated by judiciously
marking such branches using the GCC extension function __builtin_expect, which directs
the compiler to insert a hint to the target processor’s branch prediction unit that one end
of the branch is unlikely to be taken. The primary problem with this approach is that while
it does represent the direction in which the Python language is moving towards, Python is
not there yet, so it would represent a divergence from the official language definition.

A related solution involves boxing integers directly, where all integers are represented by
a machine word that contains either a pointer to a long integer, or a 31-bit integer. This
representation uses one bit of the integer to determine whether the object is a machine integer
or a pointer. While well accepted in the Smalltalk community, this approach has been harshly
criticized in the Python community, making its introduction into Starkiller problematic.
Much of the criticism has centered on difficulties achieving efficient implementations across
many different processor architectures; the Alpha architecture in particular imposes a severe
performance penalty on the bit twiddling operations required to support this approach.
Many of the other concerns raised center around implementation complexity and would not
be relevant to Starkiller.

An even greater divergence from the language specification is implied by the third op-
tion, namely keeping the original Python semantics of isolating machine from long integers.
Machine integer overflow would result in an exception rather than silent promotion to long.
Since Python’s machine integers are signed, Starkiller can use the SIGFPE signal to detect
overflows and raise exceptions without cluttering the instruction stream with conditional
checks. This option offers the best performance while introducing significant semantic dif-
ferences compared to the Python language specification.

References

[1] Ole Agesen. Concrete Type Inference: Delivering Object-Oriented Applications. PhD
thesis, Stanford University, 1996.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns: El-
ements od Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series. Addison-Wesley Publishing Company, New York, NY, 1995.

[3] Jean Goubault. Generalized boxings, congruences and partial inlining.

[4] Ralph E. Griswold and Madge T. Griswold. The Icon Programming Language. Prentice
Hall, 1990.

[5] John L. Hennessey and David A. Patterson. Computer Organization and Design: The
Hardware/Software Interface. Morgan Kaufmann, 1998.

27

[6] Xavier Leroy. The effectiveness of type-based unboxing. In Workshop Types in Compila-
tion ’97. Technical report BCCS-97-03, Boston College, Computer Science Department,
June 1997.

[7] Stephan Murer, Stephen Omohundro, David Stoutamire, and Clemens Szyperski. Iter-
ation abstraction in sather. ACM Trans. Program. Lang. Syst., 18(1):1–15, 1996.

[8] Neil Schemenauer, Tim Peters, and Magnus Lie Hetland. Simple generators. Python
Enhancement Proposal 255, May 2001.

[9] Peter J. Thiemann. Unboxed values and polymorphic typing revisited. In Proceed-
ings of the seventh international conference on Functional programming languages and
computer architecture, pages 24–35. ACM Press, 1995.

[10] Guido van Rossum and Fracis L. Drake, editors. Python Language Reference. Python-
Labs, 2003.

[11] Ka-Ping Yee and Guido van Rossum. Iterators. Python Enhancement Proposal 234,
January 2001.

[12] Moshe Zadka and Guido van Rossum. Unifying long integers and integers. Python
Enhancement Proposal 237, March 2001.

28

