PyOb|C Hacking

Bob Ippolito
Conference

PyCon DC, March 2005

Intended Audience

Python developers using Mac OS X 10.3 or later
... that aren't (very) afraid of C

Who probably know a little about Objective-C

... and want to do some crazy stuff on their Mac

Topics

Objective-C Runtime Tricks
Wrapping Frameworks
Writing Plug-Ins

Code Injection

Objective-C Runtime Tricks

Classes

... at runtime

Categories

... think mix-in

Protocols

... think interface

Selectors

... (not) everything is an object

Classes

» Are first-class objects
 Have a flat namespace
 The runtime is dynamic

Flat class namespace

>>> i nport objc

>>> obj c. getd assLi st ()

(<obj ective-c class NSRecursivelLock at 0OxaOa055f 8>,
<obj ective-c class NSi nt Nunber at 0xa0a06528>,
<obj ective-c class NSRandontpecifier at 0xa0a06d38>,
cal)

>>> obj c. | ookUpC ass(' NSArray")

<obj ective-c class NSArray at Oxa0a037f 8>

Dynamic runtime support

>>> i nport objc
>>> obj c. | ookUpd ass(' NSAppl i cation')
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
obj c. nosuchcl ass_error: NSApplication
>>> jnport AppKit
>>> obj c. | ookUpd ass(' NSAppl i cation')
<obj ective-c class NSApplication at Oxa2df 8358>

Categories

Used to add specific functionality to a class
... after it was created

For example, AppKit adds drawing code to Foundation
classes

... can be used to replace functionality

NSDate gmtime.py

from Foundation inport *
| nport objc
cl ass NSDat e(obj c. Cat egory(NSDat e)) :
def gntine(self):
return tinme.gntine(self.tinmelnterval Si ncel970())

Loading the Category

>>> from Foundation inport *
>>> now = NSDat e. dat e()
Traceback (nost recent call |ast):
File "<stdin>", line 1, in ?
AttributeError: 'NSCFDate' object has no attribute 'gntine'
>>> jnport NSDate gntine
>>> NSDat e. date().gntine()
(2005, 3, 22, 23, 41, 33, 1, 81, 0)
>>> now. gnt i me()
(2005, 3, 22, 23, 40, 39, 1, 81, 0)

NSString _mangledintValue.py

from Foundation inport *
| nport objc
class NSString(objc.Category(NSString)):

def intVal ue(self):
"self" is a real NSString here

not pretending to be unicode

try:
return int(self.UTF8String(), 0)

except Val ueError:
return O

Don't Try This At Home!

>>> i nport objc

>>> s = NSString.stringWthString (u' 0666")
>>> s, intVal ue()

666

>>> jnport NSString mangl edl nt Val ue

>>> s, intVal ue()

438

Protocols

A way to declare formal interfaces without inheritance
... that can be checked at runtime
Looks like an @interface block

Not often useful, but some applications use it to verify
plugins

Getting a Protocol

>>> i nport objc
>>> obj c. prot ocol Nanmed(' NSObj ect ")
<obj c.formal protocol NSCbject at Ox5f 160>

Checking Protocol conformance

>>> i nport objc

>>> NSCodi ng = obj c. protocol Nanmed(' NSCodi ng")
>>> 0 = NSOQbject.alloc().init()

>>> 0. conf ornmsToPr ot ocol _(NSCodi ng)

0

Declaring Protocol conformance

| nport objc

NSLocki ng = obj c. prot ocol Nanmed(' NSLocki ng')

cl ass Doesnt Real | yConf or mlfo(NSQhj ect, NSLocki ng):
if it conforned, there would be
an i npl enentation here
pass

Creating new Protocols

| nport objc

MyPr ot ocol = objc.formal protocol (
"MyPr ot ocol ",
None,

[

obj c. sel ector (
None,
sel ect or =" nynet hod"
signature='v@"',

Selectors

Is the "name" of a message that can be sent
Each colon in the name denotes an argument

Objective-C message syntax mixes the selector and its
arguments

... PyODbjC does not (can't)
... and It uses underscores instead of colons
Normally the defaults are good for PyObjC

... unless the selector is used dynamically by Objective-C
code

Type signature is preserved by the Objective-C compiler
(yay?)

Inspecting a Selector

>>> from Foundation inport *

>>> sel = NSData.dataWthBytes |ength_
>>> sel . sel ector

‘dataWt hBytes: | ength:'

>>> sel . signature

'@e@: 4r ~v8l 12

from Foundation inport *
| nport objc
| nport random

cl ass NeedsToRet urnl nt s(NSOQbj ect) :
def anlnt(self):

return random randi nt (- 1000, 1000)
anlnt = objc.selector(anlnt, signature=1@")

Type@:{Signatures=i@c}?!

Look like line noise

We don't offer a way to explain them

Or an easy way to compose them

But our docs point to the relevant Apple docs

Wrapping Frameworks

There are a bunch of cool third party frameworks you can
use

You can grab useful stuff from C frameworks we don't
wrap

We can't commit Tiger code yet, so you have to wrap
those by hand

Fortunately it's easy enough

DiscRecording.py

| nport objc as _objc
this can be an absolute path too
_path = _objc. pat hFor Framewor k(' Di scRecor di ng. franmewor k')
_0bj c. | oadBundl e(
"D scRecording',
gl obal s(),
bundl e_pat h=_pat h,

Poking at DiscRecording

>>> from D scRecording inport *

>>> print u'\n' .join([

devi ce. di spl ayNanme()

.. for device in DRDevice. devices()
oo 1)
MATSHI TA DVD-R UJ- 815

Plugins

e Built like a framework, but is runtime loadable code
(MH_BUNDLE)

 Python isn't great at this, damned global state!
e ... butit's good enough (that's what | tell myself, anyway)

Where are they used?

o Services (bad idea, every process gets them)

e ... butthere is a process-based API too

* |nput Managers (bad idea, every process gets them)

e Screen Savers

* Interface Builder palettes

* To extend existing Cocoa applications (QuickSilver, etc.)
* To bootstrap the evil that is objc.inject

Plugin Guidelines

Usually have to set a custom NSPrincipalClass in the
Info.plist

One and only one Python per process
... Shared sys.modules, etc.
Global state = Ugh.

setup.py for SillyBallsSaver

fromdistutils.core inport setup
| nport pyZ2app

plist = dict(
NSPri nci pal d ass="Si |l | yBal | s',
)

set up(
plugin=["SillyBalls.py'],
data files=['English.lproj'],
opti ons=di ct (py2app=di ct (
extensi on='. saver',
plist=plist,
)

objc.inject

* Think "gdb attach"

« Lots of possibilities

* Loads a Python plugin into any app
e A great way to crash

e Module-level code is NOT EXECUTED IN THE MAIN
THREAD

objc.inject syntax

| nport objc
objc.inject(<pid> full _path_to bundle)

Questions?

. ask.

	PyObjC Hacking
	Intended Audience
	Topics
	Objective-C Runtime Tricks
	Classes
	Flat class namespace
	Dynamic runtime support
	Categories
	NSDate_gmtime.py
	Loading the Category
	NSString_mangledIntValue.py
	Don't Try This At Home!
	Protocols
	Getting a Protocol
	Checking Protocol conformance
	Declaring Protocol conformance
	Creating new Protocols
	Selectors
	Inspecting a Selector
	Implementing non-default Selector
	Type@:{Signatures=i@c}?!
	Wrapping Frameworks
	DiscRecording.py
	Poking at DiscRecording
	Plugins
	Where are they used?
	Plugin Guidelines
	setup.py for SillyBallsSaver
	objc.inject
	objc.inject syntax
	Questions?

