Python Profiling and Visualization

Richard Saunders rts@rincon.com
(Rincon Research Corporation)

Clinton Jeffery, Michael Wilder
{jeffery,mwilder}@cs.nmsu.edu
(New Mexico State University)

This work has graciously been sponsored by Rincon Research Corporation
(RRC) and is copyright RRC 2004/2005,
but most work has been open sourced.

Background

" Rincon Research Corporation: We build Digital Signal
Processing (DSP) Applications

« DSP applications are VERY compute-intensive
® Fast Fourier Transforms (FFET), filters, demodulation, etc.

" Applications built using proprietary MIDAS

« Component-based: Compute-intensive components written
in C/C++/FORTRAN

« Script-based: Components assembled/connected with
scripting (glue) language

24 March 2005 Rincon Research Corporation
New Mexico State University

What We Want: The Ideal

" RRC Problem: Building DSP applications is HARD

* Need performance of C/C++/FORTRAN but the flexibility of
Python (see “An empirical comparison of G, C++, Perl,
Python, Rexx, and Tcl”, IEEE Computer)

" RBecall “Uncle” Don Knuth's Maxim

* 95% of run-time spent in 5% of code

" |deal Solution
 First, write 100% of application in Python
 Profile to find hot spots and rewrite that 5% in C/C++

24 March 2005 Rincon Research Corporation
New Mexico State University

Current Python Profiling Tools

" |deal Solution assumes an abundance of profiling tools, but not
as many as we'd like. Currently:

* Python has two run-to-completion profilers

" profile module: Written in Python. Easy to read!,

but runs slowly, doesn't profile C routines of C Python
Modules (supposedly fixed in Python 2.4)

" hotspot module: Written in C. Harder to read, runs
faster, but postings on newsgroups don't give glowing
reviews

« Both use the profiling hooks already in Python

" Deterministic profiling: catches every function call, return,
exception

24 March 2005 Rincon Research Corporation
New Mexico State University

Approach

®" BRC needs steady state debuggable applications

® While the program is running, we can debug It

« Site tunable: applications run in environments where they
need to be profiled/tuned where installed

« Dynamic profiling: turn on/off while running

« Minimal intrusion: cheap enough for production code

" Two-prong approach:
* Cop for Python: watch profile of program as it runs

 Visualization tools: watch time spent in Python VM

24 March 2005 Rincon Research Corporation

New Mexico State University

Python Top: Example

FUNCTION NAME:*TOTAL TIME****%*:*%DESC:*%PROC:*FILENAME*************:*LINE#
:writestr : 1.9500e+10:97.7 : 00.0 : 99.9 : pyText2Pdf.py: 340
:StartPage : 3.1646e+08:01.6 : 74.9 : 25.0 : pyText2Pdf.py: 454
: EndPage : 1.2225e+08:00.6 : 63.1 : 36.8 : pyText2Pdf.py: 505
:WriteHeader : 1.6958e+06:00.0 : 72.8 : 27.1 : pyText2Pdf.py: 398
:parseArgs : 2.1563e+05:00.0 : 26.9 : 73.0 : pyText2Pdf.py: 306
:? : 1.0504e+05:00.0 : 10.6 : 89.3 : b/python2.3/getopt.py: 16
:__init__ : 5.3041e+04:00.0 : 00.0 : 99.9 : pyText2Pdf.py: 176
:getopt : 3.8645e+04:00.0 : 00.0 : 99.9 : b/python2.3/getopt.py: 52
:pyText2Pdf : 3.2025e+04:00.0 : 00.0 : 99.9 : pyText2Pdf.py: 174
:argsCallBack : 1.9461e+04:00.0 : 00.0 : 99.9 : pyText2Pdf.py: 221
: GetoptError : 1.1105e+04:00.0 : 00.0 : 99.9 : b/python2.3/getopt.py: 39
24 March 2005 Rincon Research Corporation 6

New Mexico State University

Python top: Implementation

® Uses deterministic profiling

« Catches all function calls and returns events via built-in hook
iIn Python (uses C hook for speed)

" Timestamps each event

» Super cheap: uses single rttscl1l instruction
on Intel (cycle counter)

" Uses ULMA (Ultra Lightweight Monitoring Architecture)
« Sends event to “Python top” in another CPU

" Avoids computing “top” information in same CPU as
running program

" Techniques applicable to other languages (C++ example)

24 March 2005 Rincon Research Corporation 7
New Mexico State University

Python top Diagram

I process
B modules/libraries

24 March 2005 Rincon Research Corporation 8
New Mexico State University

Alamo: A Monitoring Framework

" Alamo (work of Dr. Jeffery)
« Has 118+ events for VM and runtime system events
« Useful for writing event-driven visualizations

« Written in Unicon, a high-level language (from unicon.org,
also on sourceforge) similar to Python

 Alamo tends to have tools for Virtual Machine events
"= |ist, string, tables, etc. X creation, destruction, access

« Covered in the book: Program Monitoring and Visualization:
An Exploratory Approach

24 March 2005 Rincon Research Corporation
New Mexico State University

ULMA

® Ultra Lightweight Monitoring Architecture
 How fast can we send events?

» Approximation for Alamo's rich event set for Python, but
more flexible in terms of event handling and communication
mechanisms

® On-going work, hoping to write a paper

« How fast can we send events in same process? Machine?
Network?

" Lightweight Events: Can send pointers, very cheap
" Heavyweight Events: Have to do “deep copy” of info

24 March 2005 Rincon Research Corporation 10
New Mexico State University

Adding| Hooks to Python

" Events:

e Creation: typically can intercept “Meta” Objects construction
events at run-time: wedge in to turn on, wedge out

® No need to change any Python VM code!
® There Is no extra overhead if not instrumenting!

" (Sometimes, have to change code in Python/Objects:
inlistobject.c: PyListNew also creates
objects)

« Deletion: similarly, instrument PyXObject destructor

" Currently added 20 hooks to Python for these types:
 Lists, Dictionaries, Strings, Integers, Long Integers

24 March 2005 Rincon Research Corporation 11
New Mexico State University

PyD ct Type

24 March 2005

What's a Wedge?
— (PR

Rincon Research Corporation
New Mexico State University

12

24 March 2005

Adding a Wedge

static D ctDestRoutine dict dtor _old = 0O;

static void dict_dtor wedge (PyQhject* o)
{

unsi gned si ze;
If (!dict_dtor_old) {

fprintf(stderr, "dict_dtor_wedge: Invalid\n”);

return;

}

size = o0 ? PyDict_Size(o) : O;
scoreEvent (SCORE DI CT_DEALLCC, size, 0);
(*dict _dtor _old)(o0);

}

/* Call fromPython to set-up */

static PyQbject?

catch _dict _dtors (Py(Object* self, PyQoject* args)
{

char * s;

I f (! PyArg_ParseTupl e(args, "s", &s)) return NULL;

If (!dict _dtor _old) {
dict dtor old = PyD ct _Type.tp deall oc;
PyDi ct _Type.tp_deal l oc = di ct_dtor_wedge;

Py | NCREF(Py_None); return Py_None;

Rincon Research Corporation
New Mexico State University

13

Multilingual Environment

® Python and Uniconin different processes

 Python generates heavyweight events (Why? vs. top's
lightweight)

e Puts in an ULMA shared memory queue (double buffered)

« Unicon reads event, and displays information in some
visualization

® Discussion: Can Python and Unicon exist in same
process? How do they share information?

24 March 2005 Rincon Research Corporation 14
New Mexico State University

Example: Different Monitors

" algae shows call stack (perfect for generators)
« Uses hexagons to approximate tree structure

® nova shows list construction events as a “circular clock”
« Clock winds around as list construction events happen
" pbarmem shows construction events for lists, integers,
dictionaries, strings, large integers

« Gives idea how many objects you are constructing

24 March 2005 Rincon Research Corporation 15
New Mexico State University

Example: Python Sample Program with
Unicon/Alamo Monitors

by, N

return on empty stack list _11(0)

at "[/home/rts/BackMellp/InCruces2,/python/1ib/python2 . 3/1lib-tk/Tkinter.py, \x1f'x0

0% x004x00 , 7]\ x00%x 18 \xc 8 \xb39 \ x0a’Fi\x00x00"

@ Fri Mar 4, 9:03 AM Q)

Open I

- Rotate
- Move

% 3Spin

degrees

Enlarge by:

-~ Projection
% FHat Camera

.~ Circular Camera

INFO: Instrumenting (intercepting) every dict alloc.
WABRNING: Ignoring new log name shmlist, using old one:shmlist
INFO: Instrumenting (intercepting) every integer alloc.

File Edit View Terminal Tabs Help

alamo: got E_Lecreate size=1
alamo: got E_List size=16
= 2

alamo: e —~

alamo: | Bar Graph, scale 0.0001

alamo: {Dict List
alamo:

alamo:
alamo:
alamo:
alamo:
alamo:
alamo:
alamo:
alamo:
alamo:

Integer

alamo: E _List size=16
alamo: E_Lecreate size=0
alamo: E_List size=16
alamo: E_Lcreate size=0
alamo: E_Ldelete size=232
alamo: E_Lcreate size=0
alamo: E_Table size=124
alamo: E_Tereate size=0

Terminal
Eile Edit Miew Terminal Tabs Help

alamo: got E Lrcreate size=0
alamo: got E_Integer size=12
alamo: got E Integer size=12
alamo: got E_Table size=124
alamo: got E_Tcreate size=0
alamo: got E_Table size=124
alamo: got E Tcreate size=0
alamo: got E Ldelete size=16
alamo: got E_Ldelete size=20
alamo: got E_Integer size=12
alamo: got E Integer size=12
alamo: got E_Integer size=12
alamo: got E_Integer size=12
alamo: got E_List size=16
alamo: got E Loreate size=0
alamo: got E_List size=16
alamo: got E_Lcreate size=0
alamo: got E Ldelete size=232
alamo: got E_Table size=124
alamo: got E_Tcreate size=0
alamo: got E_Table size=124
alamo: got E Tcreate size=0

Bl Terminal |BE¥ Terminal |B Terminal

24 March 2005

Bl Terminal

[[] Bar Graph, |[_] tk

Rincon Research Corporation
New Mexico State University

Conclusion

" Wrote a real-time profiler for generating Linux “top”-like
Information

* Need a few iterations to clean it up, but usable now

® Built a hybrid Python/Unicon system

« Added Hooks to Python Virtual Machine that should
potentially be put back in the main source tree

® Work still in progress, downloadable from
hitp://www.rrc.com/downloads/PythonHooks

24 March 2005 Rincon Research Corporation
New Mexico State University

17

Future Work

® Move visualizations into Python
« More events? More access to program state?

" Add support for threads
« Don't currently support multi-threaded Python programs

"= 3D Visualizations

* Professor Jeffery currently working on collaborative virtual
environment NSF grant, hoping we can reuse work

" Beowulf Cluster Monitoring: Can we scale?

24 March 2005 Rincon Research Corporation 18
New Mexico State University

