Documentation Costs Avoided
using Python and other Open Standards
Andrew Jonathan Fine
Operating Systems Software Organization

Engines, Systems, and Services
Honeywell International
The purpose of this paper is to show how I integrated Python, COM, DocBook, OpenJade, and Word together to create a documentation tool to support BEACON, the core of my organization’s visual programming environment.
When I started out, I did not have any experience at SGML, XML, or other markup languages. It was only when I was perilously close to reinventing the concept of markup languages, by adapting direct PythonCOM to Word interfaces from Mark Hammond's book, Python Programming on Win32, that I decided there had be a better way to do this from a design and maintenance standpoint.
A Web search provided me with a crash education on markup languages such as XML, HTML, and SGML My search also provided insight on how DocBook SGML was an overwhelmingly popular open standard, and on how an open source package named OpenJade could translate a DocBook SGML file into Word Rich Text file.

The arrangement wasn't perfect but I realized:

· I could save a year in development and maintenance.

· I could respond rapidly to new assignments.
Throughout this paper and its appendices I have included data, listings, and references to downloadable public DocBook DSSSL archives.

Together they should work sufficiently well on a Win32 workstation for a reader to understand the basic principles under discussion.

The Core Data Flow
My mission was to translate arbitrary data mined from various sources scattered throughout my local organization; into sensible-looking Microsoft Word 97 reports.

Early on I decided that this was best handled through a core pipeline of applications that cooperated with each other using common data conventions, such as in Figure 1.

It seemed sensible to have a single Python generator application for controlling a set of front end translators, a content inserter, and a post-processing formatter
The generator application would decide report layout, and would be designed as a class to help cope with requests for new types of reports. The front end translators arrange data (pictures, tables, paragraphs) into a dictionary.
The inserter would create a Word document and insert items into the document selected by the generator. A post-processing formatter takes this and modifies it according to the latest corporate Word format style template.
The flow was designed to cope with changes in requirements by the different teams within our department, and by corporate-level standards.

[image: image1.emf]Company

Document

Company

Database

Translators

Paragraphs,

Tables,

Pictures

Inserter

Formatter

Raw.doc Final.doc

Company

Template.dot

Generator

Application

Figure 1:
Original Core Data Flow
The first front-end translator I needed to create was to take pictures, tables, and data from a recursive property list constructed by an aerospace industry software visual programming tool called BEACON.

The actual design of this translator is beyond the scope of this paper, however, from this translator I was able to obtain a huge amount of sample data fit for testing an inserter.

The design of the Word content inserter was based on a straightforward use of principles demonstrated by Mark Hammond's book, Python Programming in Win32. There is a chapter containing a thorough treatment of how to have Python use the Word 97 COM object model to create and manipulate a Word Document.
From this experience, I will state that one of the nicest things about Python is its win32com library. With it, the majority of Office Automation chores reasonably expected of a Visual Basic programmer can be done without needing to buy Visual Basic or related programming tools, debuggers, or libraries.
I would highly recommend Python over Visual Basic to anyone contemplating the need for maintainable and scalable Win32 GUI and batch applications containing the maximum fraction of code that can be redeployed to other uses. This is especially true for those manipulating COM interfaces.
Problems with the Inserter
I initially took the direct approach to inserting and specifying the content in specified context using specified style. This involved writing a tree of class methods where each method invoked and checked results of a COM interface.

I started confronting difficulties with this approach after a month of going down this design path.
It turned out that the speed of the COM interface was unacceptably slow when inserting the massive amounts of table cells that I had culled from the BEACON source code.
Worse still were the reuse issues that I was beginning to confront with the classes I was writing for dealing with the different stylistic issues at the different levels of sections, headings, paragraphs, and phrases.
To address the reuse issue, I was actually beginning to consider writing ASCII text files for specifying margins, font, heading level, and insertion points for standard forms. I was starting to get overwhelmed by the design issues after spending a week on this.
I was now perilously close to designing my own standard for text-specified typesetting. If I went forward I would become responsible for maintaining this standard as well as any code complying with it for as long as I stayed at my department. Did I really want to do this? No.
My department wanted to use Python as more than simply a clearer and more composable substitute to subsume our existing Perl, MSDOS, and in-house direct I/O batching language for control system test stands. Inventing standards and solutions in-house for common problems had long ceased to be cost-effective for us, we very much needed to take advantage of what other people had done.

Python has such a tremendous user base that extra Python libraries existed on the Web to provide access to already existing open standards and the open source systems that implement them.
Ideally, I wanted to find a Python API that would quickly generate nicely typeset copy in Word 97 for a limited set of documents, but in 2001 there was nothing available, and after a month's worth of work this problem had become non-trivial.
The next question to ask was this: was there an existing open standard for typesetting that a Python API could be quickly written to wrap around?
Shopping for a Standard
I spent a week surveying on the Web what the rest of the world had done for open source automated typesetting. Arguably I should have done this before writing a single line of code, but this was my first employment where I was allowed extensive Web access from my desk's computer.
I did find two very popular standards for transforming ASCII text into typeset copy: TeX and DocBook. Both of these standards had open source implementations in C.

I wanted to choose the standard that would best fit a simple Python API. Ideally, a document should be generated from a tree of method calls where each call mapped to a different level of text.
DocBook had more clearly defined and documented production rules for typesetting elements. DocBook, The Definitive Guide is a real treasure when it comes to explaining these rules in detail.
DocBook specification text has two flavors: SGML and XML. They both have nested structures of tags with either options or enclosed text.
The XML standard was still under development during 2001, so that left SGML as an available reliable standard. An open source rendering engine existed to translate SGML directly into Microsoft Rich Text Format. From there, I could have Python control Word to load the content as RTF, perform any necessary postprocessing cleanup, then emit the final Word document file.
These findings changed the overall system architecture to that shown in Figure 2.

[image: image2.emf]Company

Document

Company

Database

Translators

Paragraphs,

Tables,

Pictures

DocBook.py

OpenJade

DocBook.smgl

Result.rtf

Company

Template.dot

Generator

Application

Typesetting

Text in

DocBook

SGML

Local

Docbook

DSSSL

stylesheets

DocBook

SGML

definition and

default

stylesheets

Local.dsl

Local.dtd

\usr\packages\sgml

Final.doc Cleanup.py

Figure 2:
Revised System Architecture using Python and DocBook
I also found a webpage that was extremely helpful for aligning the contents of DocBook download components into a workable hierarchy. A reformatted copy of this webpage in included as Appendix A.
I downloaded the components shown in Table 1 based on the advice of that webpage:
	Download
	Description

	Jadew1_2_1.zip
	OpenJade, an open source DSSSL rendering engine

	docbk41.zip
	DSSSL files representing DocBook SGML 4.1 standard

	docbkx412.zip
	DSSSL files representing DocBook XML 4.1.2 standard

	Docbook-dsssl-1.73.zip
	DSSSL files containing core DocBook definition

	ISOEnts.zip
	Additional DSSSL files for special fonts and symbols

Table 1:

Components for using DocBook on Win32 platforms
The webpage instructions were tedious and did not precisely fit my situation, so I wrote a Python script to do the work for me. This script is included as Appendix B.
The files listed in Table 2 provided some very useful documentation in support of the above downloads:
	Download
	Description

	tdg-en-html-2.0.2.zip
	DocBook: the Definitive Guide, English edition.

	Docbook-dsssl-doc-1.73.zip
	Documentation on DSSSL files for code DocBook definition.

Table 2:

Recommended DocBook documentation

Finally, I had needed to make some special modifications to OpenJade and DocBook to provide extra features that various teams wanted, these are included as Appendix C, D and E.
An Example Python API for DocBook
DocBook: The Definitive Guide provided me with enough background knowledge to enable me to design a Python API to DocBook.
As an example, suppose we want to generate the figure as part of a Word document:

	Name
	Type

	statexxe "statex" \i
	Integer

	stateyxe "statey" \i
	Long

Figure 3:

A DocBook informal table rendered by OpenJade into Word

Using local DocBook definitions this would look like Figure 4.
	<!DOCTYPE informaltable SYSTEM "C:\Local.dtd">

<informaltable frame='all'>

<tgroup cols='2' colsep='1' rowsep='1' align='center'>

<colspec colname='Name' colwidth='75' align='left'></colspec>

<colspec colname='Type' colwidth='64' align='center'></colspec>

<thead>

<row>

<entry><emphasis role='bold'>Name</emphasis></entry>

<entry><emphasis role='bold'>Type</emphasis></entry>

</row>

</thead>

<tbody>

<row>

<entry><phrase role='xe' condition='italic'>statex</phrase></entry>

<entry>Integer</entry>

</row>

<row>

<entry><phrase role='xe' condition='italic'>statey</phrase></entry>

<entry>Long</entry>

</row>

</tbody>

</tgroup>

</informaltable>

Figure 4:

DocBook SGML sample used as input to OpenJade for generating Figure 3
To write the application in Python, we can use a subset of the DocBook SGML productions, implemented as a Python class in Appendix F.
This class contains those DocBook definitions needed to implement the above example. The Python code starting on the next page shows how this class is used as a library to generate the above DocBOOK SGML.

Figure 5:

Python code for generating DocBook SGML sample in Figure 4

Some explanation is needed. Class DocBook from DocBook.py in Appendix F is the top-level interface callable class. All that is needed to write a DocBook application is a local class variant that inherits from class DocBook, such as class Example.

The inheriting class (Example) overrides methods and data from the class DocBook to specify custom behavior:

· The class instance attribute, self.data, is overriden at runtime to specify our own local class variant, InformalTable, of DocBook's informal table class, DocBook.Rules.InformalTable.

· The class data attribute, SECTION, is overridden to specify the title of our local InformalTable.

In turn, our own local variant classes inherit from other DocBook interface callable classes, and override class or instance data as needed to provide an unbroken chain of calls to generate the SGML.
The OpenJade Interface
The DocBook package is an extensive set of directories of files written in DSSSL, the Document Style Semantics and Specification Language. DSSSL is a special variant of Scheme, an open-source implementation of the Lisp knowledge-based programming language.

 DocBook DSSSL specifies the DocBook style of text translation from SGML or XML into low-level DSSSL semantics.
OpenJade is an open source DSSSL execution engine available from SourceForge (www.sourceforge.net). It reads the DocBook DSSSL stylesheets and user's local DSSSL stylesheets if any. The DSSSL is executed upon the user's SGML source text to write a final document to load into the user's word processor.
In our case, we want to automatically generate files readable by Microsoft Word, so I have OpenJade set to emit Microsoft Word Rich Text files.
OpenJade is operated as a command-line application, as such, it is simple to design Python code to run it from a Popen4 Python standard library call.
Assuming a proper DocBook DSSSL hierarchy has been laid out for OpenJade (Appendix A-E) with environment variables properly set, one can execute OpenJade as follows:
jade -E4000 -t rtf -d Local.dsl c:/usr/sgml/jade/xml.dcl c:\docbook.sgml

Where:

· -t selects the final document format

· -d selects our local DSSSL stylesheet
· the next argument specifies the top-level DSSSL declaration
· the final argument specifies a file containing DocBook SGML (such as from Figure 3)
Because of differing versions between DocBook DSSSL, other archives, and OpenJade, warning or minor error messages usually appear having no significant effect on the appearance of the final document.

I do test the SGML text output by the Python DocBook classes against an unfiltered invokation of OpenJade, to confirm the pattern's overall integrity. Once the classes are in a production environment, I then set the -E switch to have OpenJade ignore diagnostics resulting from large amounts of SGML input.

Post-Processing using Word Automation with PythonCOM
The Microsoft Rich Text Format files created by OpenJade are quite attractive in overall appearance. However, this appearance did not conform with many of the corporate level standards for formatted documentation in Microsoft Word Document files. A local DSSSL stylesheet was written to override several of the default DocBook DSSSL settings.
This did not address how most of the corporate level standards involved Microsoft Word style identifier names that the generated documents had to point to.

To address this, reformatter is needed as the final stage of the document pipeline. It traverses the table, figure, heading, and section level style identifiers at the various levels of the generated RTF document's COM object model.
It renames style identifier names to conform with the actual ones used by a copy of Microsoft Word Document Template (DOT) file handed out as a standard by our local reprographics department.
Finally, it saves the modified document as a Microsoft Word document.
None of these tasks were particularly difficult. Once the COM interface to an Win32 application supporting same is well understood, that application devolves to just another library in the hands of a Python designer.

Mission Accomplished
The assumptions to derive return on investment are conservative. They may be higher due to other factors explained later.

I spent the bulk of 2001 developing a system using the ideas in this paper to translate content from a BEACON visual programming language file directly into a Word document in a completely hands off manner. In 2002 I also performed significant revisions. My total effort in development, maintenance, and support was about half time over a two year period.

Between the years 2002 and 2003, my department had 5 ongoing projects at various stages of development ranging in complexity from 30 visual programming files to as many as 150, perhaps 75 on average.

During each of these years for each of those projects, there were at least 2 major mandated releases where the important contents of every file had to be peer reviewed: examined in detail by no less than 3 engineers simultaneously (moderator, author, and inspector).

Each of these releases required every visual programming file be rendered into a viewable hard copy format containing all its diagram; and a cross-referenced table of all identifiers in every diagram with storage classes, ranges, initial values, documentation, and other fields.

The visual programming language GUI application, BEACON, had no comprehensive hardcopy generator. Instead, it would take an entry level engineer working under moderate supervision to inspect the file with BEACON running on UNIX over a UNIX to Win32 X terminal emulator, manually transferring text from the X terminal into an open Word document.

The least complex of these files (about 1/5) would take half a day. The bulk of the files (3/5) would take an entire day on average. The most complex of these files (about 1/5) would at least 2 days.

This stood to waste significant engineering labor that was better spent in improving the quality of my department's software products.

Each project release:
1/5 * 75 * 4 hours = 60 hours

3/5 * 75 * 8 hours = 360 hours

1/5 * 75 * 16 hours = 240 hours

 660 hours

 Two major releases per year: * 2 = 1,320 hours

 Five projects needing releases: * 5 = 6,600 hours

 Two year period (2002-2003) * 2 = 13,200 hours

 Total effort avoided: 13,200 hours

Once automated without major problems, the generation of hardcopy for each project would tie up a single person to babysit the process for up to an entire day, worst case.
 Automated releases over 2 year period: 160 hours

 My effort (12 * 140 hours per labor month): 1 680 hours

 Total investment: 1 840 hours

Net effort avoided, 2002-3: 11,360 hours

Net avoided by customers 2002-3 at $100/hour: 1,136,000 dollars

Net labor years avoided 2002-3 at 1680 hours/year: 6.76 years

Headcount avoided per year: 3.38 people
	ROI (Total effort avoided / total invested) 2002-3: 7.17

Clearly, the return on investment (ROI) for automating the generation of documentation just for formal releases to customers clearly helped my department avoid a substantial amount of manual labor cost.
Sometimes a new capability provides new conveniences that engineers can exploit to increase the pace or quality of a project, saving more money in ways too hard to measure directly.
For example, before this capability was in place, a peer review meeting involving BEACON usually had to take place in front of an author, moderator, or inspector's terminal. Now, engineers are more often able to convene in an actual meeting room, since now it becomes convenient to generate hardcopy for BEACON files under inspection just prior to the meeting.
One beneficial side effect of designing an automated application for this purpose is being able to write a utility to automatically install and integrate subcomponents.
It sometimes took hours for a engineer to manually customize his or her UNIX account to use BEACON from an NT workstation, set up the X terminal and remote shell interfaces, and cross-mount the local NT drive so that the UNIX account can see it. An automated setup process for all this takes now less than 5 minutes to execute.

That was a spinoff of Python code to launch BEACON from NT under UNIX for BEACON to generate pictures to include in DocBook SGML files.

The Road Not Travelled
Finally, we could consider the cost of using other technologies.
The two most popular programming languages that are used for Office Automation are C++ and Visual Basic.

If C++ were used rather than Python, I would need to build or find open libraries for COM control and SGML generation. To integrate these libraries would have required, for me, extensive debug pointers and buffers and would have required at least double the effort.
I have done created GUI’s and Office Automation in Visual Basic for a previous employer. Visual BASIC does not offer the developer true object-oriented constructions for inheritance, polymorphism, and overrideable methods and data. These limitations greatly impact the development time.

Because of my knowledge level of C++, my efficiency across the development cycle would have been half that of developing in Python. Because of the technical limitations of Visual Basic, it would have been reduced to a third or worse.

The other possibility is choosing to reinvent a typesetting standard in terms of Python and COM rather than taking one off the shelf to integrate with Python.
The issues I had confront after a single month of effort proved to be daunting. Were I forced to rimplement even that fraction of the features actually needed from DocBook, I would have needed 5 more months to finish development (6 total), with same in maintenance.
Python and DocBook together proved to be a formidable combination for eliminating a real-world business process bottleneck.
The decision of my department to adopt Python and to allow me to use it along with another open standard, DocBook, has been vindicated by a substantial return on investment over a medium term period of time, even if only in terms of documentation costs avoided.
Appendix A

Configuration of DocBook downloads for Win32

http://lists.oasis-open.org/archives/docbook-apps/200011/msg00183.html
docbook-apps message

Subject: Re: DOCBOOK-APPS: Transforming DocBook/XML with jade on Win32
· From: Rune Enggaard Jensen <r.e.jensen@bigfoot.com>

· To: docbook-apps@lists.oasis-open.org

· Date: Wed, 29 Nov 2000 16:33:37 +0100
OK, this is it! I have everything working with no errors now. In this posting I will describe (very) briefly what I did. Later I will make a more elaborate description and submit it to the FAQ. I use Windoze NT 4.0, DocBook/SGML 4.1, DocBook/XML 4.1.2, DSSSL 1.59 and jade 1.2.1/openjade 1.3. Furthermore I use a set of SGML ISO entities found at Oasis (http://www.oasis-open.org/cover/ISOEnts.zip).

In the following I have assumed that you have already installed the packages mentioned above.

Here is my placement of the files:

NOTE: I have moved the XML versions of the ISO entities from the directory\docbook\xml\ent to the directory\ISOentities\XML

C:\usr\packages\sgml

 +--DocBook

 | +--SGML

 | | +--4.1

 | +--XML

 | +--4.1.2

 +--DSSSL

 | +--ALOC

 | | +--IDEAS

 | +--DocBook

 | +--bin

 | +--common

 | +--contrib

 | | +--html

 | | +--imagemap

 | | +--print

 | | +--renumberinpart

 | | +--subdoc

 | +--doc

 | | +--html

 | | +--lib

 | | +--print

 | | +--testdata

 | +--docsrc

 | | +--htmlpr

 | | +--libref

 | | +--printpr

 | +--dtds

 | | +--dbdsssl

 | | +--decls

 | | +--html

 | | +--imagelib

 | | +--olink

 | +--frames

 | +--html

 | +--images

 | | +--callouts

 | +--lib

 | +--olink

 | +--print

 | +--test

 | +--cases

 | +--imagelib

 | +--xml

 +--ISOentities

 | +--SGML

 | +--XML

 +--jade

 +--OpenJade

 +--bin

 +--dsssl

 +--jadedoc

 | +--images

 +--pubtext

I have a centralized catalog in the top SGML directory containing the

lines

 CATALOG c:/usr/packages/SGML/jade/catalog

 CATALOG c:/usr/packages/SGML/DSSSL/docbook/catalog

 CATALOG c:/usr/packages/SGML/DocBook/SGML/4.1/docbook.cat

 CATALOG c:/usr/packages/SGML/DocBook/XML/4.1.2/docbook.cat

If you use openjade, you must change the first line to

 CATALOG c:/usr/packages/SGML/openjade/dsssl/catalog

I have set the following environment variables:

 SGML_CATALOG_FILES=c:/usr/packages/SGML/catalog

 SP_CHARSET_FIXED=yes

I have not set the SP_ENCODING variable, since this is only necessary

when using the unicode-encoding (correct?).

I have edited docbook.cat for the XML version: I added the lines

 OVERRIDE YES

 SYSTEM "urn:x-oasis:docbook-xml-v4.1.2" "docbookx.dtd"

just before the line

 PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "docbookx.dtd"

so I can use the method suggested by Norm in his column "If You Can Name

It, You Can Claim It!". See

http://www.arbortext.com/Think_Tank/Norm_s_Column/Issue_three/issue_three.html
I have edited the public identifiers for the ISO entities from the form

 PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN"

 "ent/iso-dia.ent"

to the form

 PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN//XML"

 "../../../ISOentities/XML/iso-dia.ent"

Note that two things were changed in the identifier: The path to the

entitity file (use your own, if you don't like it :-) and "...//EN" ->

"...//EN//XML". The last change is what made everything work! If you omit

the "OVERRIDE" directive from above, you must change paths in the file

dbcentx.mod too.

I have also edited docbook.cat for the SGML version of DocBook: I

commented out the DTDDECL directive, since jade doesn't supportit,

and jade is what I use :-):

From

 DTDDECL "-//OASIS//DTD DocBook V4.1//EN" "docbook.dcl"

to

 -- DTDDECL "-//OASIS//DTD DocBook V4.1//EN" "docbook.dcl" --

I also edited the paths to the entities, e.g.:

From:

 PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN"

 "iso-dia.gml"

to

 PUBLIC "ISO 8879:1986//ENTITIES Diacritical Marks//EN"

 "../../../ISOentities/SGML/ISOdia"

Now my DocBook/XML documents contains the following document type

declaration:

 <!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"

 "urn:x-oasis:docbook-xml-v4.1.2">

When using the XML version of DocBook, I invoke jade like this (line

wrapped, don't try this at home :-)

 jade -t rtf -d /path/to/DSSSL/docbook/print/docbook.dsl

 /path/to/jade/xml.dcl docname

Everything works perfectly, even when I use national (danish) characters

in the input file.

I hope you can use this, otherwise give me a call^H^H^H^Hmail!

Best regards

 Rune Enggaard Jensen

 r.e.jensen@bigfoot.com

· References:

· DOCBOOK-APPS: Transforming DocBook/XML with jade on Win32

· From: Sebastian Bergmann <sb@sebastian-bergmann.de>

· RE: DOCBOOK-APPS: Transforming DocBook/XML with jade on Win32

· From: Dave Pawson <daveP@dpawson.freeserve.co.uk>

· Re: DOCBOOK-APPS: Transforming DocBook/XML with jade on Win32

· From: Norman Walsh <ndw@nwalsh.com>

Appendix B

Automated Configuration Script to Implement Appendix A
"""

File: Unpack.py

Purpose: Unpack all essential DocBook related zip files into a

 working hierarchy.

Author(s): Andrew Jonathan Fine

DESIGN NOTES: The script implements the XML portion of suggestions from

 OASIS archives application note:

 http://lists.oasis-open.org/archives/docbook-apps/200011/msg00183.html

 submitted to OASIS by Rune Enggaard Jensen,

 <r.e.jensen@bigfoot.com>

 on Wed 29 Nov 2000 16:33:37 +0100
USAGE: Place archives adjacent to this script. The script will extract all the
 information which it needs from archives,

 creating a directory, “SGML”, containing a working DocBook configuration.

 This directory can be copied where needed.

"""

###

Standard Python Libraries used by this script:

###

from strop import find, replace

from shutil import copyfile

import sys, os, zipfile

###

Specify files to unpack:

###

JADE_BINARY_DISTRIBUTION = 'jadew1_2_1'

DOCBOOK_DSSSL_DISTRIBUTION = 'docbook-dsssl-1.73'

DOCBOOK_XML_DISTRIBUTION = 'docbkx412'

DOCBOOK_SGML_DISTRIBUTION = 'docbk41'

ISOENTITIES_DISTRIBUTION = 'ISOEnts'

###

Constants:

###

def _dots3 (x): return x [0] + '.' + x[1] + '.' + x[2]

def _dots2 (x): return x [0] + '.' + x[1]

XML_VERSION_ID = DOCBOOK_XML_DISTRIBUTION [-3 :]

XML_VERSION_NAME = _dots3 (XML_VERSION_ID)

SGML_VERSION_ID = DOCBOOK_SGML_DISTRIBUTION [-2 :]

SGML_VERSION_NAME = _dots2 (SGML_VERSION_ID)

DO_NOT_COPY = ('', '')

ZIP_EXTN = '.zip'

PROJECT = 'c:\\usr\packages' # must already exist! adjust as needed
SGML = '\\sgml\\'

argv = sys.argv

args = len (argv)

WHERE = ((args > 1) and argv [1].strip()) or 'Eggs'

SGML_DESTINATION = PROJECT + WHERE + SGML

DOCBOOK_DSSSL_DESTINATION = SGML_DESTINATION + 'DSSSL\\Docbook'
DOCBOOK_XML_DESTINATION = SGML_DESTINATION + 'DocBook\\XML\\' + XML_VERSION_NAME

DOCBOOK_SGML_DESTINATION = SGML_DESTINATION + 'DocBook\\SGML\\' + SGML_VERSION_NAME

ISO_XML_DESTINATION = SGML_DESTINATION + 'ISOEntities\\XML'

ISO_SGML_DESTINATION = SGML_DESTINATION + 'ISOEntities\\SGML'

JADE_DESTINATION = SGML_DESTINATION + 'Jade'

CATALOG_DESTINATION = SGML_DESTINATION + 'catalog.cat'

JADE = 'jade.exe'

DOCBOOK_CATALOG = 'docbook.cat'

catalog = 'CATALOG "jade/catalog" \n' \

 + 'CATALOG "DSSSL/docbook/catalog" \n' \

 + 'CATALOG "Docbook/SGML/' \

 + SGML_VERSION_NAME \

 + '/' \

 + DOCBOOK_CATALOG \

 + '" \n' \

 + 'CATALOG "Docbook/XML/' \

 + XML_VERSION_NAME \

 + '/' \

 + DOCBOOK_CATALOG \

 + '"'
def content (path):

 'content of a file (non-existent file implies empty content).'

 result = None

 try:

 file = open (path)

 except:

 return

 try:

 result = file.read ()

 except:

 pass

 try:

 file.close ()

 except:

 pass

 return result
def emit (path, content, mode = "w"):

 """

 create file containing content, return file's path when successful

 """

 result = None

 if not path:

 return

 if not content:

 return

 try:

 file = open (path, mode)

 except:

 return result

 try:

 file.write (content)

 file.flush ()

 result = path

 except:

 pass

 return result
###

Unpack any archive, with optional filtering action:

#

(name, content) = filter (name, content)

###

def unpack (archive, filter = None, archives_path = '', debug = 0):

 if archives_path:

 archive = os.path.join (archives_path, archive)

 z = zipfile.ZipFile (archive)

 for name in z.namelist ():

 content = z.read (name)

 if filter:

 (name, content) = filter (name, content, archives_path)

 if name:

 name = replace (name, '/', '\\')

 if debug:

 print name, len (content)

 else:

 sys.stdout.write ('.')

 try:

 os.makedirs (os.path.dirname (name))

 except:

 pass # usually means path already exists

 emit (name, content, 'wb')

 z.close ()

###

Unpack filter for DocBook DSSSL Distribution

###

def _docbook_dsssl_filter (name, content, dummy = None):

 name = replace (name, DOCBOOK_DSSSL_DISTRIBUTION, DOCBOOK_DSSSL_DESTINATION)

 return (name, content)

###

Unpack filter for DocBook XML Distribution

###

def _docbkx_filter (name, content, dummy = None):

 ax = 'PUBLIC "-//OASIS//DTD DocBook XML V' \

 + XML_VERSION_NAME \

 + '//EN" "docbookx.dtd"'

 ay = 'OVERRIDE YES\n' \

 + 'SYSTEM "urn:x-oasis:docbook-xml-v' \

 + XML_VERSION_NAME \

 + '" "docbookx.dtd"\n\n' \

 + ax

 b00x = 'Diacritical Marks//EN"'

 b00y = 'Diacritical Marks//EN//XML"'

 b01x = 'Numeric and Special Graphic//EN"'

 b01y = 'Numeric and Special Graphic//EN//XML"'

 b02x = 'Publishing//EN"'

 b02y = 'Publishing//EN//XML"'

 b03x = 'General Technical//EN"'

 b03y = 'General Technical//EN//XML"'

 b04x = 'Added Latin 1//EN"'

 b04y = 'Added Latin 1//EN//XML"'

 b05x = 'Added Latin 2//EN"'

 b05y = 'Added Latin 2//EN//XML"'
 b06x = 'Greek Letters//EN"'

 b06y = 'Greek Letters//EN//XML"'

 b07x = 'Monotoniko Greek//EN"'

 b07y = 'Monotoniko Greek//EN//XML"'

 b08x = 'Greek Symbols//EN"'

 b08y = 'Greek Symbols//EN//XML"'

 b09x = 'Alternative Greek Symbols//EN"'

 b09y = 'Alternative Greek Symbols//EN//XML"'

 b10x = 'Added Math Symbols: Arrow Relations//EN"'

 b10y = 'Added Math Symbols: Arrow Relations//EN//XML"'

 b11x = 'Added Math Symbols: Binary Operators//EN"'

 b11y = 'Added Math Symbols: Binary Operators//EN//XML"'

 b12x = 'Added Math Symbols: Delimiters//EN"'

 b12y = 'Added Math Symbols: Delimiters//EN//XML"'

 b13x = 'Added Math Symbols: Negated Relations//EN"'

 b13y = 'Added Math Symbols: Negated Relations//EN//XML"'

 b14x = 'Added Math Symbols: Ordinary//EN"'

 b14y = 'Added Math Symbols: Ordinary//EN//XML"'

 b15x = 'Added Math Symbols: Relations//EN"'

 b15y = 'Added Math Symbols: Relations//EN//XML"'

 b16x = 'Box and Line Drawing//EN"'

 b16y = 'Box and Line Drawing//EN//XML"'

 b17x = 'Russian Cyrillic//EN"'

 b17y = 'Russian Cyrillic//EN//XML"'

 b18x = 'Non-Russian Cyrillic//EN"'

 b18y = 'Non-Russian Cyrillic//EN//XML"'

 cx = 'ent/iso-'

 cy = '../../../ISOEntities//XML//iso-'

 if name == DOCBOOK_CATALOG:

 for pair in [(ax, ay), (b00x, b00y), (b01x, b01y),

 (b02x, b02y), (b03x, b03y), (b04x, b04y),

 (b05x, b05y), (b06x, b06y), (b07x, b07y),

 (b08x, b08y), (b09x, b09y), (b10x, b10y),

 (b11x, b11y), (b12x, b12y), (b13x, b13y),

 (b14x, b14y), (b15x, b15y), (b16x, b16y),

 (b17x, b17y), (b18x, b18y), (cx, cy)]:

 content = replace (content, pair [0], pair [1])

 if find (name, '\\ent') >= 0:

 return DO_NOT_COPY

 if find (name, '.ent') < 0:

 name = os.path.join (DOCBOOK_XML_DESTINATION, name)

 else:

 name = os.path.join (ISO_XML_DESTINATION, os.path.basename (name))

 return (name, content)
###

Unpack filter for DocBook SGML Distribution

###

def _docbk_filter (name, content, dummy = None):

 ax = 'DTDDECL "-//OASIS//DTD DocBook V4.1//EN" "docbook.dcl"'

 ay = '-- ' + ax + ' --'

 cx = '"iso-'

 cy = '"../../../ISOEntities//SGML//iso'

 if name == DOCBOOK_CATALOG:

 for pair in [(ax, ay), (cx, cy)]:

 content = replace (content, pair [0], pair [1])

 name = os.path.join (DOCBOOK_SGML_DESTINATION, name)

 return (name, content)
###

Unpack filter for Jade distribution

###

def _jade_filter (name, info, archives_path):

 name = os.path.join (JADE_DESTINATION, name)

 if find (name, JADE) >= 0:

 path = 'Patches\\' + JADE

 if archives_path:

 path = os.path.join (archives_path, path)

 copyfile (path, name)

 return DO_NOT_COPY

 return (name, info)

###

Unpack filter for ISO Entities

###

def _iso_filter (name, info, dummy = None):

 name = os.path.join (ISO_SGML_DESTINATION, name + '.gml')

 return (name, info)

###

Lay down paths for file tree

###

def _buildtree ():

 for x in [DOCBOOK_XML_DESTINATION, \

 DOCBOOK_SGML_DESTINATION, \

 DOCBOOK_DSSSL_DESTINATION, \

 ISO_SGML_DESTINATION, \

 JADE_DESTINATION]:

 try:

 os.makedirs (x)

 except:

 pass # usually means path already exists
###

Procedural interface:

###

def Unpack (archives_path = '', debug = 0):

 print "Unpacking DocBook Tools",

 buildtree ()

 emit (CATALOG_DESTINATION, catalog)

 for pair in [(DOCBOOK_XML_DISTRIBUTION + ZIP_EXTN, \

 _docbkx_filter), \

 \

 (DOCBOOK_SGML_DISTRIBUTION + ZIP_EXTN, \

 _docbk_filter), \

 \

 (DOCBOOK_DSSSL_DISTRIBUTION + ZIP_EXTN, \

 _docbook_dsssl_filter), \

 \

 (JADE_BINARY_DISTRIBUTION + ZIP_EXTN, \

 _jade_filter), \

 \

 (ISOENTITIES_DISTRIBUTION + ZIP_EXTN, \

 _iso_filter), \

]:

 unpack (pair [0], pair [1], archives_path, debug)

###

Command-line interface:

###

if __name__ == '__main__':

 Unpack (debug = 1)

End of 'Unpack.py'
Appendix C
Local modifications to OpenJade

The various teams wanted documents containing features that DocBook and OpenJade did not ordinarly provide but were routinely expected in Word documents. The features included:

· Identifiers that would display as entries in an index.

· Figures and tables whose captions would display as entries in a table of contents.

These special features were normally implemented as field codes in the Microsoft Word object model. However, OpenJade did not implement these field codes in its Rich Text Format backend generator.
The following patch modifies the RTF backend to allow a DocBook stylesheet to arbitrarily emit special characters that are essential components in RTF implementations of Word field codes.
In file RtfFOTBuilder.cxx
In method void RtfFOTBuilder::characters ()
CHANGE FROM

	 case '\0':

 break;

 case ';':

 case ',':

 if (mathLevel_ && *s == eqArgSep_ && mathSpecial_ == mathNormal)

CHANGE INTO
	case '\0':

 break;

#ifdef WIN32

///////// DANGER!!! MIS EN GUARDE!!! ACHCTUNG!!! PELIGROSO!!! //////////

 case 0xfffd:

 os() << '{';
// Left brace for user-embedded Word 97 Field codes

 break;

case 0xfffe:

 os() << '}';
// Right brace for user-embedded Word 97 Field codes

 break;

case 0xffff:

 os() << '\\';
// Backslash for user-embedded Word 97 Field codes

 break;

///////// DANGER!!! MIS EN GUARDE!!! ACHCTUNG!!! PELIGROSO!!! //////////
#endif /* WIN32 */

 case ';':

 case ',':

 if (mathLevel_ && *s == eqArgSep_ && mathSpecial_ == mathNormal)

Normally, the wide characters for left curly brace {, right curly brace }, and backstroke \, are emitted with a backstroke preceding them (\{, \}, and \\ respectively) so that RTF sees them as escaped literal text rather than as part of an RTF expression.
To emit arbitrary field codes at will, I needed to define wide characters that map to the unescaped versions. Wide character 0xFFFD maps to {, wide character 0xFFFE maps to }, and wide character 0xFFFF maps to \ when OpenJade is recompiled with this patch.

This patch is a gateway that now can allow someone who does not use extreme care, to cause great mayhem within an RTF document and hence to Word when the document is read.

Appendix D and E together form an excellent example of how to safely interface this new feature to DocBook. Appendix D adds some new high level terms in DocBook that are used by the Python-generated DocBook SGML. Appendix E implements several modifications to the DocBook <para> production to add special effects such as indexable text.

Appendix D

Local DocBook stylesheet definitions (Local.dtd)
<!--

;; File: Local.dtd

;;

;; Purpose: DocBook DTD declaration customization layer specific

;; to local documentation requirements

;;

;; Author(s): Andrew Jonathan Fine

;;-->

<!--

;;

;; DESIGN NOTES:

;;

;; The open source text processor, Jade, requires an input text

;; file, a DTD file, and a DSL file in order to operate properly.

;;

;; The chain of dependencies you have to consider when processing

;; any input text file goes like this:

;;

;; text file ===> DTD file ===> DSL file

;;

;; - The purpose of the text file is obvious.

;;

;; - The purpose of the DTD file is to declare any and all SGML tags

;; (enclosed by angle brackets) used by the text file as having

;; some kind of purpose.

;;

;; - The purpose of the DSL file is to define the specific behavior

;; (using the DSSSL language) of the tags declared by the DTD.

;;

;;

;; The text file points to the DTD file like this:

;; (yes, foward / is required by Jade, this is not a bug!)

;;

;; !DOCTYPE section SYSTEM "c:/Local.dtd"

;;

;; Which reads, literally, "the definition of the tag

;; 'section' is found in the DTD file whose system-level

;; location is "c:/Local.dtd"

;;

;; All the other tags are "enclosed" by the section tag,

;; which is why no other file references are required.

;;

;;

;; The DTD file refers to element definitions located in any DSL file

;; which Jade can find. That DSL file is specified on the Jade command

;; line using the '-d' option.

;;

;;

;; Not all elements need to be declared in the top-level DTD file, and

;; not all elements need to be defined in the top-level DSL file. This

;; allows for site-specific modifications of text-processing behavior.

;;

;;

;; (the file, xml.dcl, is a Jade standard file used by Jade to define

;; the syntax of XML, which is the meta-language the input text file is

;; written in).

;;

;;

;; Finally, the '-t rtf' option in Jade allows for the generation of

;; Microsoft Word Rich Text Format, as the kind of output we want.

;;

;;

;; Tying this all together is the following command-line:

;; ==

;;

;; jade -t rtf -d c:/Local.dsl c:/usr/packages/sgml/jade/xml.dcl input.txt

;;

;;

;; To understand further on writing custom DSSSL, please refer to

;; Section 4.3.8, 'Customizing the Stylesheets', from 'DocBook, The

;; Definitive Guide', published by O'Reilly & Associates, (c) 2001.

;;-->
<!--

 Declare a local instance of general character class

 whose name is textfield.

 -->

<!ENTITY % local.gen.char.class "|textfield">

<!--

 Read the existing declarations for DocBook from Jade's general catalog.

 -->

<!ENTITY % DocBookDTD PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN" "urn:x-oasis:docbook-xml-v4.1.2">

%DocBookDTD;

<!--

 Declare the behavior of the element textfield as based on a

 standard behavior offered by DocBook (refer to The Definitive

 Guide appendices for details on how %refinline.char.mix works)

 -->

<!ELEMENT textfield - - ((%refinline.char.mix;)+) >

<!--

 Declare that the attributes which textfield can use are the

 common ones which most elements in DocBook can use.

 -->

<!ATTLIST textfield

 %common.attrib;

>

<!-- End of "Local.dtd" -->
Appendix E
Local DocBook stylesheet implementations (Local.dsl)
<!DOCTYPE style-sheet PUBLIC "-//James Clark//DTD DSSSL Style Sheet//EN" [

<!ENTITY dbstyle PUBLIC "-//Norman Walsh//DOCUMENT DocBook Print

Stylesheet//EN" CDATA DSSSL>

]>

<style-sheet>

<style-specification use="docbook">

<style-specification-body>

;;;;

;; File: Local.dsl

;;

;; Purpose: DocBook DSL style-sheet customization layer specific

;; to local documentation requirements

;;

;; Author(s): Andrew Jonathan Fine

;;;;

;;;;

;;

;; DESIGN NOTES:

;;

;; The open source text processor, Jade, requires an input text

;; file, a DTD file, and a DSL file in order to operate properly.

;;

;; The chain of dependencies you have to consider when processing

;; any input text file goes like this:

;;

;; text file ---> DTD file ---> DSL file

;;

;; - The purpose of the text file is obvious.

;;

;; - The purpose of the DTD file is to declare any and all XML tags

;; (enclosed by angle brackets) used by the text file as having

;; some kind of purpose.

;;

;; - The purpose of the DSL file is to define the specific behavior

;; (using the DSSSL language) of the tags declared by the DTD.

;;

;;

;; The text file points to the DTD file like this:

;; (yes, foward / is required by Jade, this is not a bug!)

;;

;; !DOCTYPE section SYSTEM "c:/Local.dtd"

;;

;; Which reads, literally, "the definition of the tag

;; 'section' is found in the DTD file whose system-level

;; location is "c:/Local.dtd"

;;

;; All the other tags are "enclosed" by the section tag,

;; which is why no other file references are required.

;;

;;

;; The DTD file refers to element definitions located in any DSL file

;; which Jade can find. That DSL file is specified on the Jade command

;; line using the '-d' option.

;;

;;

;; Not all elements need to be declared in the top-level DTD file, and

;; not all elements need to be defined in the top-level DSL file. This

;; allows for site-specific modifications of text-processing behavior.

;;

;;

;; (the file, xml.dcl, is a Jade standard file used by Jade to define

;; the syntax of XML, which is the meta-language the input text file is

;; written in).

;;

;;

;; Finally, the '-t rtf' option in Jade allows for the generation of

;; Microsoft Word Rich Text Format, as the kind of output we want.

;;

;;

;;

;; Tying this all together is the following command-line:

;; --

;; jade -t rtf -d c:/Local.dsl c:/usr/packages/sgml/jade/xml.dcl input.txt

;;

;;

;;

;; To understand further on writing custom DSSSL, please refer to

;; Section 4.3.8, 'Customizing the Stylesheets', from 'DocBook, The

;; Definitive Guide', published by O'Reilly & Associates, (c) 2001.

;;;;

;;;

; Parameters to DSSSL rulesets

;;;

(define %title-font-family% "Times New Roman")

(define %body-font-family% "Times New Roman")

(define %mono-font-family% "Courier New")

(define %admon-font-family% "Arial")

(define %dingbat-font-family% "WingDings")

(define %body-start-indent% 0pt) ; rely on Word template for indentation

;;;

; Parameters to Jade RTF backend

;;;

(declare-characteristic

preserve-sdata?

"UNREGISTERED::James Clark//Characteristic::preserve-sdata?"

#t

)

;;;;

;; A DSSSL function to write a custom XML tag, 'textfield', along

;; the general style of a paragraph - with specific appearance.

;;

;; Note: The custom tag, 'textfield', in defined in Local.dtd

;;;;

(element textfield

 (let ((effect (attribute-string (normalize "condition"))))

 (if (not effect)

 (make paragraph)

 (case effect

; (("6") (make paragraph font-size: 6pt))

; (("8") (make paragraph font-size: 8pt))

 (("page-break") (make paragraph break-before: 'page))

 (else (make paragraph))))))

;;;;

;; A DSSSL override function to an existing element,

;; to center images in the print output

;;

;; See DocBook StyleSheet FAQ, Section 1, from

;; http:/www.miwie.org/docbook-dsssl-faq.html#CENTERIMAGES

;;;;

(element imagedata

 (if (have-ancestor? (normalize "mediaobject"))

 (img (current-node) #t)

 (img (current-node) #f)))

;;;;

;; make: \code content

;;;;

(define (rtf-escape-code code content)

 (let ((stroke (literal "\U-FFFF"))

 (pad (literal " ")))

 (make sequence stroke code pad content)))

;;;;

;; make: { content }

;;;;

(define (rtf-brace-content content)

 (let ((lbrace (literal "\U-FFFD"))

 (rbrace (literal "\U-FFFE")))

 (make sequence lbrace content rbrace)))

;;;;

;; make: \code { content }

;;;;

(define (rtf-escape-code-brace-content code content)

 (rtf-escape-code

 code

 (rtf-brace-content content)))

;;;;

;; make: { \code { content } }

;;;;

(define (simple-field-code code content)

 (rtf-brace-content

 (rtf-escape-code-brace-content code content)))

;;;;

;; make: code \modifier

;;;;

(define (rtf-code-modifier content modifier)

 (let ((stroke (literal "\U-FFFF"))

 (pad (literal " ")))

 (make sequence content stroke modifier)))

;;;;

;; make: code \modifier parameter

;;;;

(define (rtf-code-parameter content modifier parameter)

 (let ((stroke (literal "\U-FFFF"))

 (pad (literal " ")))

 (make sequence content stroke modifier pad parameter)))

;;;;

;; DSSSL function to create index field codes

;;;;

(define (index-field-code content effect)

 (let ((index (literal "xe"))

 (italic (literal "ixe"))

 (bold (literal "bxe")))

 (simple-field-code

 index

 (case effect

 (("italic") (rtf-code-modifier content italic))

 (("bold") (rtf-code-modifier content bold))

 (("bold-italic")

 (rtf-code-modifier (rtf-code-modifier content italic) bold))

 (else content)))))

;;;;

;; DSSSL function to create index field effect

;;;;

(define (index-field content effect)

 (index-field-code (rtf-brace-content content) effect))

;;;;

;; DSSSL function to create index field for specific index

;;;;

(define (select-index-field content effect selector)

 (index-field

 (rtf-code-parameter content (literal "xef") (literal selector))

 effect))
;;;;

;; DSSSL function to create RTF/Word hidden text field

;;;;

(define (hidden-text content)

 (let ((lbrace (literal "\U-FFFD"))

 (rbrace (literal "\U-FFFE"))

 (stroke (literal "\U-FFFF"))

 (pad (literal " "))

 (hide (literal "v")))

 (make sequence lbrace stroke hide pad content rbrace)))

;;;;

;; DSSSL function to create RTF/Word field codes

;;;;

(define (extend-field-code code content)

 (let ((lbrace (literal "\U-FFFD"))

 (rbrace (literal "\U-FFFE"))

 (stroke (literal "\U-FFFF"))

 (qmark (literal "\""))

 (field (literal "field"))

 (fldinst (literal "fldinst"))

 (star (literal "*"))

 (pad (literal " ")))

 (make sequence

 lbrace stroke field

 lbrace stroke star

 stroke fldinst

 lbrace code pad

 qmark content qmark

 rbrace

 rbrace

 rbrace)))

;;;;

;; DSSSL override to apply special effects to a phrase if desired.

;;;;

(element phrase

 (let ((role (attribute-string (normalize "role")))

 (effect (attribute-string (normalize "condition")))

 (xref (attribute-string (normalize "xreflabel"))))

 (if (not role)

 ($charseq$)

 (case role

 (("xe") (index-field ($charseq$) effect))

 (("xef") (select-index-field ($charseq$) effect xref))

 (("xei") (index-field (hidden-text ($charseq$)) effect))

 (("xeif") (select-index-field (hidden-text ($charseq$)) effect xref))

 (("seq") (extend-field-code (literal role)

 ($charseq$)))

 (("toc") (extend-field-code (literal "toc \\c")

 ($charseq$)))

 (("index") (extend-field-code (literal "INDEX \\c")

 ($charseq$)))

 (("doc") (extend-field-code (literal "INCLUDEPICTURE")

 ($charseq$)))

 (("section-break")

 (rtf-escape-code (literal "sect")

 ($charseq$)))

 (("page-break")

 (rtf-escape-code (literal "page")

 ($charseq$)))

 (else ($charseq$))))))

;;;;

;; A DSSSL override for treatment of sections and section titles.

;;

;; (The original text was copied from DocBook dbsect.dsl

;;;;

(define ($section-title$)

 (let* ((sect (current-node))

 (info (info-element))

 (exp-children (if (node-list-empty? info)

 (empty-node-list)

 (expand-children (children info)

 (list (normalize "bookbiblio")

 (normalize "bibliomisc")

 (normalize "biblioset")))))

 (parent-titles (select-elements (children sect) (normalize "title")))

 (info-titles (select-elements exp-children (normalize "title")))

 (titles (if (node-list-empty? parent-titles)

 info-titles

 parent-titles))

 (subtitles (select-elements exp-children (normalize "subtitle")))

 (renderas (inherited-attribute-string (normalize "renderas") sect))

 (hlevel ;; the apparent section level;

 (if renderas ;; if not real section level,

 (string->number ;; then get the apparent level

 (substring renderas 4 5)) ;; from "renderas",

 (SECTLEVEL))) ;; else use the real level

 (hs (HSIZE (- 4 hlevel))))

 (make sequence

 (make paragraph

font-family-name: %title-font-family%

font-weight: 'medium

font-posture: 'upright

font-size: 11.5pt

line-spacing: (* hs %line-spacing-factor%)

space-before: (* hs %head-before-factor%)

space-after: (if (node-list-empty? subtitles)

 (* hs %head-after-factor%)

 0pt)

start-indent: (if (or (>= hlevel 3)

 (member (gi) (list (normalize "refsynopsisdiv")

 (normalize "refsect1")

 (normalize "refsect2")

 (normalize "refsect3"))))

 %body-start-indent%

 0pt)

first-line-start-indent: 0pt

quadding: %section-title-quadding%

keep-with-next?: #t

heading-level: (if %generate-heading-level% (+ hlevel 0) 0)

;; SimpleSects are never AUTO numbered...they aren't hierarchical

(if (string=? (element-label (current-node)) "")

 (empty-sosofo)

 (literal (element-label (current-node))

 (gentext-label-title-sep (gi sect))))

(element-title-sosofo (current-node)))

 (with-mode section-title-mode

(process-node-list subtitles))

 ($section-info$ info))))

;;;;

;; After our own custom modifications, read in the general DocBook

;; DSL definitions, for the general DocBook style.

;;;;

</style-specification-body>

</style-specification>

<external-specification id="docbook" document="dbstyle">

</style-sheet>
Appendix F
Example DocBook Class Library
The code listed in this appendix contains a working portion of an DocBook SGML generator as implemented in Python, enough to that an one-to-one mapping from DocBook into Python callable classes can be designed without great difficulty.
These scripts are meant to be placed in the same directory. DocBook SGML applications should import and inherit from class DocBook and its members.
------- Option.py start --------#
class Option:

 'an SGML tag option'

 def __init__ (self, value):

 self.title = self.__class__.__name__.lower ()

 self.value = value

 def __str__ (self):

 return "%s='%s'" % (self.title, str (self.value))
------- Option.py end --------#
------- List.py start --------#
class List:

 'SGML tag options'

 OPTIONS = []

 sp = ' '

 def __init__ (self, *args):

 self.data = [x (a) for (x, a) in zip (self.OPTIONS, *args)]

 def __str__ (self):

 return self.sp.join (map (str, self.data))
------- List.py end --------#
--- Lists.py start --
from List import List

from Options import Options

class Lists:

 class ColSpec (List):

 OPTIONS = [Options.ColName, Options.ColWidth, Options.Align]

 class Phrase (List):

 OPTIONS = [Options.Role, Options.Condition]

 class TextField (List):

 OPTIONS = [Options.Condition]

 class TGroup (List):

 OPTIONS = [Options.Cols, Options.ColSep, Options.RowSep, Options.Align]

 class InformalTable (List):

 OPTIONS = [Options.Frame]

--- Lists.py end --
------- Options.py start --------#

from Option import Option

class Options:

 class ColName (Option):

 'name of column'

 class ColWidth (Option):

 'width of column'

 class Align (Option):

 'text alignment'

 class Role (Option):

 'escape parameter'

 class Condition (Option):

 'escape parameter'

 class Cols (Option):

 'tgroup number of columns'

 class ColSep (Option):

 'tgroup column seperation'

 class RowSep (Option):

 'tgroup row seperaton'

 class Frame (Option):

 'informal table option'

------- Options.py end --------#

--- Rule.py start --

from List import List

class Rule:

 'DocBook production rule'

 cr = '\n'

 sp = ' '

 nil = ''

 LEFT = '<'

 RIGHT = '>'

 STROKE = '/'

 DOT = '.'

 BEGIN = LEFT

 END = LEFT + STROKE

 CONTENT = nil

 OPTIONS = List

 IS_TOP_LEVEL = False

 IS_INLINE = False

 TITLE = nil

 def __init__ (self, *args):

 self.options = self.OPTIONS (args)

 self.title = self._title ()

 self.data = []

 def _title (self):

 result = self.TITLE or self.__class__.__name__

 result = str (result).lower ()

 return result.split (self.DOT)[-1]

 def start (self):

 options = str (self.options).strip ()

 if options: options = self.sp + options

 return self.BEGIN + self.title + options + self.RIGHT

 def end (self):

 return self.END + self.title + self.RIGHT

 def enlist (self, data):

 if not data: return

 if type (data) != type ([]): return [data]

 return data

 def content (self):

 data = self.enlist (self.data)

 if data in [None, [None]]: return self.nil

 return self.cr.join (map (self.render, data))

 def render (self, content = None):

 content = content or self.CONTENT or self.content

 if not content: return self.nil

 if callable (content): return content ()

 return content

 def __call__ (self, content = None):

 result = self.render (content)

 if self.IS_TOP_LEVEL: return result

 separator = [self.cr, self.nil] [self.IS_INLINE or (not result)]

 return separator.join ([self.start (), result, self.end ()])

--- Rule.py end --

--- Rules.py start --

from Lists import Lists

from Rule import Rule

class ColSpec (Rule):

 'DocBook column specification'

 OPTIONS = Lists.ColSpec

class Phrase (Rule):

 'DocBook text phrase'

 OPTIONS = Lists.Phrase

 IS_INLINE = True

class Emphasis (Phrase):

 'DocBook emphasized text'

class Textfield (Phrase):

 'Local DocBook special purpose text'

class Entry (Rule):

 'column entry in row of table'

 IS_INLINE = True

class Row (Rule):

 'row of a DocBook table'

 def __init__ (self, entries):

 Rule.__init__ (self)

 self.data = entries

class THeadEntry (Entry):

 'DocBook table heading label'

 TITLE = str (Entry)

 def __init__ (self, name):

 self.CONTENT = Emphasis ('bold')

 self.CONTENT.CONTENT = name

 Entry.__init__ (self)

class THeadRow (Row):

 'DocBook table heading row of heading labels'

 TITLE = str (Row)

 def __init__ (self, names):

 Row.__init__ (self, map (THeadEntry, names))

class THead (Rule):

 'DocBook table heading'

 def __init__ (self, names):

 self.CONTENT = THeadRow (names)

 Rule.__init__ (self)
class TBody (Rule):

 'DocBook table body'

 def __init__ (self, items):

 Rule.__init__ (self)

 self.data = items

class TGroup (Rule):

 'DocBook table group'

 OPTIONS = Lists.TGroup

 THEAD = THead

 TBODY = TBody

 SHAPE = []

 COLSPECS = []

 def __init__ (self, rows):

 Rule.__init__ (self, *self.SHAPE)

 self.data = [self.cr.join (x () for x in self.COLSPECS),

 self.THEAD ([x.options.data [0].value for x in self.COLSPECS]),

 self.TBODY (rows)

]

 def __call__ (self, content = None):

 return Rule.__call__ (self, content)

class InformalTable (Rule):

 'DocBook informal table'

 OPTIONS = Lists.InformalTable

 TGROUP = TGroup

 def __init__ (self, *args):

 args = args or ['all']

 Rule.__init__ (self, *args)

 def __call__ (self, rows):

 self.data = self.TGROUP (rows)

 return Rule.__call__ (self)

--- Rules.py end --
--- DocBook.py start --

from Rule import Rule

from Rules import ColSpec as _ColSpec

from Rules import Phrase as _Phrase

from Rules import Emphasis as _Emphasis

from Rules import Textfield as _Textfield

from Rules import Entry as _Entry

from Rules import Row as _Row

from Rules import THeadEntry as _THeadEntry

from Rules import THeadRow as _THeadRow

from Rules import THead as _THead

from Rules import TBody as _TBody

from Rules import TGroup as _TGroup

from Rules import InformalTable as _InformalTable

from Options import Options as _Options

class DocBook (Rule):

 Options = _Options

 HEADER = '<!DOCTYPE %s SYSTEM "C:\Local.dtd">'

 SECTION = 'section'

 IS_TOP_LEVEL = True

 class Rules:

 ColSpec = _ColSpec

 Phrase = _Phrase

 Emphasis = _Emphasis

 Textfield = _Textfield

 Entry = _Entry

 Row = _Row

 THeadEntry = _THeadEntry

 THeadRow = _THeadRow

 THead = _THead

 TBody = _TBody

 TGroup = _TGroup

 InformalTable = _InformalTable

 def __init__ (self, data):

 Rule.__init__ (self)

 self.data = data

 def _section (self):

 result = self.SECTION

 result = str (result).lower ()

 return result.split (self.DOT)[-1]

 def header (self):

 return self.HEADER % self._section ()

 def __call__ (self):

 return self.header () + self.cr + Rule.__call__ (self)

--- DocBook.py start --

from DocBook import DocBook

class ItalicIndexPhrase (DocBook.Rules.Phrase):

 "italic indexible text phrase"

 TITLE = DocBook.Rules.Phrase

 def __init__ (self, text):

 DocBook.Rules.Phrase.__init__ (self, 'xe', 'italic')

 self.data = [text]

class NameCell (DocBook.Rules.Entry):

 "table row cell describing name of identifier (italic and indexible text!)"

 TITLE = DocBook.Rules.Entry

 def __init__ (self, text):

 DocBook.Rules.Entry.__init__ (self)

 self.data = [ItalicIndexPhrase (text)]

class StorageCell (DocBook.Rules.Entry):

 "table row cell describing storage type of identifier (ordinary text)"

 TITLE = DocBook.Rules.Entry

 def __init__ (self, text):

 DocBook.Rules.Entry.__init__ (self)

 self.data = text

class TRow (DocBook.Rules.Row):

 "each row in application's informal table body"

 TITLE = DocBook.Rules.Row

 def __init__ (self, binding):

 (identifier, storage) = binding

 DocBook.Rules.Row.__init__ (self, [NameCell (identifier),

 StorageCell (storage)

])

class TBody (DocBook.Rules.TBody):

 "application's informal table body"

 TITLE = DocBook.Rules.TBody

 def __init__ (self, items):

 DocBook.Rules.TBody.__init__ (self, map (TRow, items))

class TGroup (DocBook.Rules.TGroup):

 "application's informal table group"

 COLSPECS = [DocBook.Rules.ColSpec ('Name', 75, 'left'),

 DocBook.Rules.ColSpec ('Type', 64, 'center')

]

 SHAPE = ['2', '1', '1', 'center']

 TBODY = TBody

class InformalTable (DocBook.Rules.InformalTable):

 "application's informal table"

 TGROUP = TGroup

class Example (DocBook):

 'example application of DocBook formatting class'

 SECTION = str (InformalTable)

 def __call__ (self):

 self.data = [InformalTable ()(self.data)]

 return DocBook.__call__ (self)

if __name__ == '__main__':

 print Example ([('statex', 'Integer'), ('statey', 'Long')]) ()

- 25 -

_1170496702.vsd

_1171184419.vsd

